An introduction to
processor design

Bakowski

bako@ieee.org

%_simple_pmcessor

e a program counter : PC

e an accumulator
e an instruction register
e instruction decode and control logic

e an arithmetic-logic unit

P. Bakowski

%_simple_pmcessor

e 3 program counter

e an accumulator : ACC

e an instruction register
e instruction decode and control logic

e an arithmetic-logic unit

P. Bakowski

%_simple_pmcessor

e 3 program counter

e an accumulator

e an instruction register : IR

e instruction decode and control logic

e an arithmetic-logic unit

P. Bakowski

%_simple_pmcessor

e 3 program counter

e an accumulator
e an instruction register

e instruction decode and control logic

e an arithmetic-logic unit

P. Bakowski

%_simple_pmcessor

e 3 program counter

e an accumulator
e an instruction register
e instruction decode and control logic

e an arithmetic-logic unit : ALU

P. Bakowski

p 1o

e 16-bit processor |

e 12-bit address space

data bus : 16-bit

P. Bakowski 7

%Jﬁﬁ)it_pmpessm

* 16-bit processor 4 096 individually
e 12-bit address space | addressable 16-bit

words 1

ALU : 16 bit data bus : 16-bit

CPU

address bus : 12-bit

P. Bakowski 8

ﬂnsimcj'mmrmat

instruction format : a 16-bit word

4-bit

opcode ‘

1

to decoder and
control logic

P. Bakowski

*nsjumﬂoitoxm at

instruction format : a 16-bit word

4-bit 12-bit

opcode

to decoder and to memory
control logic decoder
P. Bakowski

10

wsjr_ucjio.n_fejch_

FETCH: load new instruction to Instruction Register

data bus : 16-bit

address bus : A

P. Bakowski 11

ﬂnsjumjLoMecode

DECODE: decode new instruction

IR : 16 bit

selection and control
signals generation

P. Bakowski 12

wsjmcﬂom;gegme

EXECUTE: execute the instruction depending on opcode

data bus : 16-bit

address bus : A

P. Bakowski 13

ﬁﬁgmmmMStruction

instruction | opcode |function
LDA A 0000 |ACC <= MEM(A)

data bus : 16-bit

address bus : A

P. Bakowski 14

fggegmmi;smmj nstruction

instruction |opcode |function
STO A 0001 MEM(A) <= ACC

data bus : 16-bit

address bus : A

P. Bakowski 15

fxegmiOLLMstruction

instruction

opcode

function

ADD A

0010

ACC <= ACC+MEM(A)

P. Bakowski

data bus : 16-bit

address bus : A

16

ﬁggegmmg;smjnact instruction

instruction |opcode |function
ADD A 0011 ACC <= ACC-MEM(A)

ACC-MEM

data bus : 16-bit

address bus : A

P. Bakowski 17

%xesuﬂml_;_jump instruction

instruction |opcode |function
JMP A 0100 PC <= A
\
PC <= A PC —
IR : 4/12-bit v I
A
- _/
unconditional jump
to new address A
P. Bakowski

18

ilump_if_g.tealer or equal instruction

instruction |opcode |function

JGE A 0101 |PC<=A (if ACC>=0)

\
if ACC>=0 PCr—>__ |
PC<=A if ACC>=0 | F
IR : 4/12-bit ! 5

A b=
< Y,

conditional jump to
new address A

P. Bakowski 19

ilump_if_gr_eater or equal instruction

instruction |opcode |function

INE A 0110 |PC<=A (if ACC!=0)

)
if ACC!=0 PCr—>__ |
PC <= A if ACCI=0 | ;

IR : 4/12-bit ! 5
Ave=» Y

conditional (if ACC
not zero) jump to

_ new address A
P. Bakowski 20

%emuloi;stop instruction

instruction |opcode |function
STP 0111 PC <= PC
PC <= PC

IR : 4/12-bit

P. Bakowski

21

{nnlml.&alh_&_llala Path
IR : 16-bit

P. Bakowski

Path

ﬁ

sequencer

ACC : 16-bit

=N
P. Bakowski address bus 23

IR loaded

ﬂ

sequencer

ACC : 16-bit

A
P. Bakowski address bus 24

ﬂ

ACC : 16-bit

A
P. Bakowski address bus

25

ruction execute (add)

IR : 16-bit |

* I
I

J

data bus
ACC : 16-bit

P. Bakowski address

DUS

26

%Lu_duesigiajﬂ L level
A B

Cin=0

A+B : normal adder output J
A-B : A+!B+1 (Cin=1)

B : A=0, Cin=0

B+1 : A=0, Cin=1

to ACC

P. Bakowski 27

%Lu_duesigiajﬂ L level
A B

Cin=1

A+B : normal adder output
A-B:A+B+1 (Cn=1) |
B : A=0, Cin=0

B+1 : A=0, Cin=1

to ACC

P. Bakowski 28

%Lu_duesigiajﬂ L level
A B

Cin=0

A+B : normal adder output
A-B : A+!B+1 (Cin=1)
B : A=0, Cin=0

B+1 : A=0, Cin=1

to ACC

P. Bakowski

29

%Lu_duesigiajﬂ L level
A B

Cin=1

A+B : normal adder output
A-B : A+'B+1 (Cin=1)

B : A=0, Cin=0

B+1 : A=0, Cin=1

to ACC

P. Bakowski

30

i

reset

} Cout

Aen

one bit slice of ALU
P. Bakowski 31

i:ljgtLpsLtOLmance processor

e extending address space: 12 to 24 (32) bits

e adding address modes
e introducing stack for subprogram calls

e introducing register block

e introducing interruptions

P. Bakowski

i:ljgtLpsLtOLmance processor

e extending address space: 12 to 24 (32) bits

e adding new address modes J

e introducing stack for subprogram calls

e introducing register block

e introducing interruptions

P. Bakowski 33

i:ljgtLpsLtOLmance processor

e extending address space: 12 to 24 (32) bits
e adding address modes

e introducing stack for subprogram calls

e introducing register block

e introducing interruptions

P. Bakowski

i:ljgtLpsLtOLmance processor

e extending address space: 12 to 24 (32) bits
e adding address modes
e introducing stack for subprogram calls

e introducing register block J

e introducing interruptions

P. Bakowski 35

i:ljgtLpsLtOLmance processor

e extending address space: 12 to 24 (32) bits
e adding address modes
e introducing stack for subprogram calls

e introducing register block

e introducing interruptions |

P. Bakowski 36

ﬁljgmpgmme processor

e extending address space: 12 to 24 (32) bits J

e adding new address modes

data bus : 32-bit

address bus : 26 or 32 bits

P. Bakowski 37

ﬁljgtLngtOLmaunce processor

e extending address space: 12 to 24 (32) bits

e adding new address modes J

J

R(opl) + R(op2) => R(dest)

P. Bakowski 38

ﬁljgmpemme processor

e extending address space: 12 to 24 (32) bits

e adding new address modes J

opcode A — dest A — offset

L.

MEM[R(base) + offset] => R(dest)
P. Bakowski 39

insiumjLOLLtypes

e data movement:

oad and store

e data processing:

e control flow: jum
return, ..

ogic and arithmetic

p, conditional jump, call,

e state instructions: execution mode,
interruption and memory control

P. Bakowski

40

e data movement:

e data processing:

ﬂnsiumjLOLLtypes

oad and store

ogic and arithmetic

e control flow: jum
return, ..

p, conditional jump, call,

e state instructions: execution mode,
interruption and memory control

P. Bakowski

41

insiumjLOLLtypes

e data movement:
e data processing:

e control flow: jum
return, ..

oad and store

ogic and arithmetic

p, conditional jump, call,

e state instructions: execution mode,
interruption and memory control

P. Bakowski

42

insiumjLOLLtypes

e data movement:
e data processing:

e control flow: jum
return, ..

oad and store

ogic and arithmetic

p, conditional jump, call,

e state instructions: execution mode,
interruption and memory control, ..

P. Bakowski

43

iOﬂtLogsmaLlnstruction types

e instruction type is a set of similar instructions:
e.g. add, subtract, .. with similar addressing
schemes y

e different instruction types are executed via
different architectural blocs

e the use of separate architectural blocs allows
for independent execution — concurrent
execution

P. Bakowski 44

iOﬂtLoggmaLinstruction types

e instruction type is a set of similar instructions:
e.g. add, subtract, .. with similar addressing
schemes

e different instruction types are executed via
different architectural blocs

e the use of separate architectural blocs allows
for independent execution — concurrent
execution

P. Bakowski 45

iOﬂtLogsmaLinstruction types

e instruction type is a set of similar instructions:
e.g. add, subtract, .. with similar addressing
schemes

e different instruction types are executed via
different architectural blocs

e the use of separate architectural blocs allows
for independent execution — concurrent
execution y

P. Bakowski 46

‘-|Condition-state code register

Z \ zero flag 00..00

P. Bakowski

47

‘-|Condition-state code register

VA

C

P. Bakowski

zero flag

carry flag

00..00

1 €=

01..01

48

‘-|Condition-state code register

P. Bakowski

zero flag
carry flag

overload flag

00..00
1 €& 01..01
] G0 01

49

‘-|Condition-state code register

oz | zero flag 00..00
_C carry flag 1 €= 01..01
vV overload flag | €84, 01
S sign flag 1] =—=11..01

P. Bakowski

50

‘-|Condition-state code register

mode flag [0,1]

o AR

Instructions

P. Bakowski

51

‘-|Condition-state code register

interruption flag [0,1]

interruption -4— Interruption

controller

P. Bakowski

52

fu_bprograms and system calls

user state/user call

instructions J

LR L LLLLL CLLL™

call return

L P,

instructions +.

P. Bakowski

53

ﬁu_bprograms and system calls

system state/system call

S\/SUEI

[SHHUCHBERS

r
’
’
F

call return

L F R,

instructions }.

P. Bakowski 54

he RISC concept
Reduced Instruction Set Computer

e data movement - 45% |

e control flow — 22%

e arithmetic operations — 14%
e comparisons — 13%

e logic operations — 5%

e other — 1%

P. Bakowski

55

he RISC concept
Reduced Instruction Set Computer

e data movement - 45%

e control flow — 22% J

e arithmetic operations — 14%
e comparisons — 13%
e logic operations — 5%

e other — 1%

P. Bakowski

56

he RISC concept
Reduced Instruction Set Computer

e data movement - 45%
e control flow — 22%

e arithmetic operations — 14% J

e comparisons — 13%
e logic operations — 5%

e other — 1%

P. Bakowski

57

he RISC concept
Reduced Instruction Set Computer

e data movement - 45%
e control flow — 22%
e arithmetic operations — 14%

e comparisons — 13% |

e logic operations — 5%

e other — 1%

P. Bakowski

58

he RISC concept
Reduced Instruction Set Computer

e data movement - 45%

e control flow — 22%

e arithmetic operations — 14%

e comparisons — 13%

e logic operations — 5% |

e other — 1%

P. Bakowski

59

he RISC concept
Reduced Instruction Set Computer

e data movement - 45%

e control flow — 22%

e arithmetic operations — 14%

e comparisons — 13%

e logic operations — 5%

e other — 1% J

P. Bakowski

60

‘-Fhe RISC concept - pipelines

Instruction elaboration stages:

e instruction fetch |
fetch‘ dec ‘ reg ‘ exec‘ mem‘ res ‘
P. Bakowski

61

‘-Fhe RISC concept - pipelines

Instruction elaboration stages:

e instruction fetch

e decode J
fetch | dec reg ‘ exec‘ mem‘ res ‘
fetch | dec ‘ reg ‘ exec‘ mem‘ res ‘

P. Bakowski 62

he RISC concept - pipelines

e instruction fetch
e decode

e read operands

dec reg ‘ exec ‘ mem‘ res ‘
fetch | dec ‘ reg exec | mem ‘ res

fetch ‘ dec reg exec ‘ mem| res
P. Bakowski 63

:Fhe RISC concept - pipelines

e execute/ calculate memory address J

reg | exec| mem| res |

dec ‘ reg exec | mem ‘ res

fetch ‘ dec reg exec | mem| res
fetch ‘ dec reg exec ‘ mem

res

P. Bakowski

:Fhe RISC concept - pipelines

e read-memory memory

)

exec | mem | res

reg exec | mem| res
dec reg exec | mem/| res
fetch dec reg exec | mem/| res
fetch dec reg exec | mem

res

P. Bakowski

:Fhe RISC concept - pipelines

e write the result |

, concurrent
execution stages

res

mem res

EXEC mem res

reg EXEC mem res

P. Bakowski 66

f_ipeline hazards

e read after write - bypass |

e jump instructions — sequence

e memory waits — stalls

bR L LLLLLLLLLLLLLLLLL™
L

fetch dec reg Ee C| mem| res
| dec | reg | iogc]| mem|

fetch dec reg exec‘ mem| res

—
time

P. Bakowski 67

f_ip_e_ling_hg;ards

e read after write - bypass

e jump instructions — sequence

e memory waits — stalls

fetch‘ dec ‘ reg exec mem‘ res
fetch dec re exec | mem| res ‘
fetch ddc reg exec mem‘
fetch dec re exec
new address 3
fetch dec reg

P. Bakowski

68

f_ipeline hazards

e read after write - bypass

e jump instructions — sequence

e memory waits — stalls J
dec | reg | exec| mem|i stall _ : res |
fetch dec ‘ reg ‘ mem‘ res ‘

P. Bakowski 69

‘-|Risc architecture (basics)

e a fixed 32-bit instruction/word size J

e |oad-store architecture where calculation
instructions operate only on registers

e large register bank of 32 32-bit registers

time

P. Bakowski 70

‘-|Risc architecture (basics)

e a fixed 32-bit instruction/word size

e load-store architecture where calculation
instructions operate only on registers

e large register bank of 32 32-bit registers

time

P. Bakowski 71

‘-|Risc architecture (basics)

e a fixed 32-bit instruction/word size

e |oad-store architecture where calculation
instructions operate only on registers

e large register bank of 32 32-bit registers J

time

P. Bakowski 72

ﬁ?is_c organization (basics)

e hard

-wired instruction decode logic

e pipe
e Sing

ined execution

e-cycle execution (throughput)

A — dest

A — offset

decoder / sequencer

J

P. Bakowski

/3

e hard

* pipe

Risc organization (basics)

-wired instruction decode logic

iIned execution J

e Sing

P. Bakowski

e-cycle execution (throughput)

« concurrent execution

stages
res
mem res
exec mem res
reg exec mem res | tl m e

74

e hard
* pipe
e Sing

-wired instruction decode logic

ined execution

e-cycle execution (throughput)

Risc organization (basics)

P. Bakowski

res

mem

one instruction per clock

cycle

res

exec

mem

res

reg

exec

mem

res |

time

75

‘-|Risc advantages

e small die size

e short development time

e high performance

il

P. Bakowski

regular structure

76

,-|Risc advantages

e small die size

e short development time

e high performance

Jj\
““‘

7.

ﬁ

=N

=

P. Bakowski

simple structure

77

‘-|Risc advantages

e small die size

e short development time

e high performance

P. Bakowski

fast clock —
simple pipeline
stages

/8

Main drawback of RISC architecture is

lower instruction code density than in
CISC architectures

2 instructions 1 instruction

P. Bakowski

79

Risc drawback

The solution to this problem is code
compression/decompresion mechanism
(ARM)

2 instructions
1 instruction

opcode compression/
W decompression

after compilation memaory

P. Bakowski 80

Risc drawback

The solution to this problem is code
compression/decompresion mechanism
(ARM)

2 instructions
1 instruction

opcode compression/
w ' decompression

memory

RISC

P. Bakowski 81

ﬁ.o_w_power consumption
Vdd — driving voltage

input signal 1

frequency switching
p - type

— L

A

n - type
- *p v \I)

Cl — gate output
E,=0.5*Cl*Vdd> aoadtty

switching power par transition

P. Bakowski 82

ﬁ.o_w_power consumption

Vdd — driving
voltage

input signal
frequency

JUL

P type

ﬁ

n #type

N~

short-circuit power

P. Bakowski

)

L

L

83

%Mpower consumption

1 Vdd — driving

input signal voltage

frequency

\
_I-Ln. < p-type
N - type
BB Y I

leakage current) Cl — gate output
capacity

P. Bakowski

84

otal dynamic power consumption

Vdd — driving voltage

| | v Cl — gate output |
input signal capacity
frequency p - type
— T
n - type
v

P, = 0.5 * f * Vdd? * X A_*C J

Ag - gate activity factor
P. Bakowski 85

*oyy_pmmer_cgnsumption
P. = 0.5 * f * vdd? * X A *Cl

e minimize supply voltage : technologyJ

e minimize circuit activity
e minimize number of gates

e minimize clock frequency

P. Bakowski

86

*ow_ppmr_cgnsumption
P. = 0.5 *f * Vdd? * X A *Cl

e minimize supply voltage

e minimize circuit activity : utilization |

e minimize number of gates

e minimize clock frequency

P. Bakowski

87

*ow_ppmr_cgnsumption
P. = 0.5 * f * vdd? * X A *Cl

e minimize supply voltage
e minimize circuit activity

e minimize number of gates : design |

e minimize clock frequency

P. Bakowski

88

*ow_ppmr_cgnsumption
P. = 0.5 * f * vdd? * X A *Cl

e minimize supply voltage
e minimize circuit activity
e minimize number of gates

e minimize clock frequency : problem ! J

P. Bakowski 89

i_Summary_

m a simple 16-bit processor model

m instruction elaboration phases

m instruction types

m control path and data path

m high performance 32-bit processor

m RISC concept — advantages and drawbacks

m low power consumption features

P. Bakowski

90

ijummary_

m a simple 16-bit processor model

m instruction elaboration phases: fetch, decode,
execute, write-back

m instruction types: arithmetic, load/store, control
m control path and data path

m high performance 32-bit processor

m RISC concept — advantages and drawbacks

m low power consumption features

P. Bakowski

91

i_Summary_

m a simple 16-bit processor model
m instruction elaboration phases

m instruction types: arithmetic, load/store, control J

m control path and data path
m high performance 32-bit processor
m RISC concept — advantages and drawbacks

m low power consumption features

P. Bakowski 92

ijummary_

m a simple 16-bit processor model
m instruction elaboration phases
m instruction types: arithmetic, load/store, control

m control path and data path J

m high performance 32-bit processor
m RISC concept — advantages and drawbacks

m low power consumption features

P. Bakowski 93

ijummary_

m a simple 16-bit processor model

m instruction elaboration phases

m instruction types: arithmetic, load/store, control
m control path and data path

m high performance 32-bit processor J

m RISC concept — advantages and drawbacks

m low power consumption features

P. Bakowski

94

i_Summary_

m a simple 16-bit processor model

m instruction elaboration phases

m instruction types: arithmetic, load/store, control
m control path and data path

m high performance 32-bit processor

m RISC concept — advantages and drawbacks J

m low power consumption features

P. Bakowski

95

ijummary_

m a simple 16-bit processor model

m instruction elaboration phases

m instruction types: arithmetic, load/store, control
m control path and data path

m high performance 32-bit processor

m RISC concept — advantages and drawbacks

m low power consumption features J

P. Bakowski 96

