An introduction to ARM
processor architecture

Bakowski

bako@ieee.org




%LomAC_OﬂN to ARM

e Acorn Computers Limited — Cambridge 1985

e Advanced Risc Machine — Cambridge 1990

Berkeley RISC I and ARM processor

e a load-store architecture
e fixed-length 32-bit instructions
e 3-address instruction formats

P. Bakowski



%LomAC_OﬂN to ARM

e Acorn Computers Limited — Cambridge 1985
e Advanced Risc Machine — Cambridge 1990

Berkeley RISC I and ARM processor

e a load-store architecture
e fixed-length 32-bit instructions
e 3-address instruction formats

P. Bakowski



,fememymc | and ARM

e Acorn Computers Limited — Cambridge 1985
e Advanced Risc Machine — Cambridge 1990

Berkeley RISC I and ARM processor |

e a load-store architecture
e fixed-length 32-bit instructions
e 3-address instruction formats

P. Bakowski



,fememyjlsc | and ARM

e Acorn Computers Limited — Cambridge 1985
e Advanced Risc Machine — Cambridge 1990

Berkeley RISC I and ARM processor

e a load-store architecture J
e fixed-length 32-bit instructions
e 3-address instruction formats

P. Bakowski



,Pemeleymc | and ARM

e Acorn Computers Limited — Cambridge 1985
e Advanced Risc Machine — Cambridge 1990

Berkeley RISC I and ARM processor

e a load-store architecture
e fixed-length 32-bit instructions |
e 3-address instruction formats

P. Bakowski



,fememyjlsc | and ARM

e Acorn Computers Limited — Cambridge 1985
e Advanced Risc Machine — Cambridge 1990

Berkeley RISC I and ARM processor

e a load-store architecture
e fixed-length 32-bit instructions
e 3-address instruction formats |

P. Bakowski



,_Pemeleyjﬁc | and ARM

Rejected features of Berkeley RISC

e register windows
e delayed branches
e single execution stage for all instructions

P. Bakowski



%emeley_ﬁls_c | and ARM

Rejected features of Berkeley RISC

e register windows

e delayed branches
e single execution stage for all instructions

P. Bakowski



%emeley_ﬁls_c | and ARM

Rejected features of Berkeley RISC

e register windows
e delayed branches

)

e single execution stage for all instructions

P. Bakowski

10



%emeley_ﬁls_c | and ARM

Rejected features of Berkeley RISC

e register windows
e delayed branches
e single execution stage for all instructions

)

P. Bakowski

11



fﬂM_aLcmtecture versions

The ARM instruction set architecture has evolved
significantly since it was first developed, and will
continue to be developed in the future. )

In order to be precise about which instructions exist
in any particular ARM implementation, five major
versions of the instruction set have been defined to
date.

These are denoted by the version numbers 1 to 6.

P. Bakowski 12



fﬂM_aLcmtecture versions

The ARM instruction set architecture has evolved
significantly since it was first developed, and will
continue to be developed in the future.

In order to be precise about which instructions exist
in any particular ARM implementation, five major

versions of the instruction set have been defined to
date. y

These are denoted by the version numbers 1 to 6.

P. Bakowski 13



fﬂM_aLcmtecture versions

The ARM instruction set architecture has evolved
significantly since it was first developed, and will
continue to be developed in the future.

In order to be precise about which instructions exist
in any particular ARM implementation, five major
versions of the instruction set have been defined to
date.

These are denoted by the version numbers 1 to 6. J

P. Bakowski 14



%BM_amnitegture versions

Many of the versions can be qualified with variant
letters to specify collections of additional instructions
that are included in that version.

J

P. Bakowski 15



fﬂM_aLcmtecture versions

Many of the versions can be qualified with variant
letters to specify collections of additional instructions

that are included in that version.

These collections vary from being J

very small (the M variant denotes the addition of
just four extra instructions) to

very large (the T variant denotes the addition of the
entire Thumb instruction set).

P. Bakowski 16



fﬂM_aLcthe_cture versions

Many of the versions can be qualified with variant
letters to specify collections of additional instructions
that are included in that version.

These collections vary from being

e very small (the M variant denotes the addition of
just four extra instructions) to

e very large (the T variant denotes the addition of
the entire Thumb instruction set)

P. Bakowski 17



fﬂM_aLcthe_cture versions

Many of the versions can be qualified with variant
letters to specify collections of additional instructions
that are included in that version.

These collections vary from being

e very small (the M variant denotes the addition of
just four extra instructions) to

e very large (the T variant denotes the addition of
the entire Thumb instruction set)

P. Bakowski 18



@BM_aLcthecture version 1

1 Version 1 was implemented only by ARM1, and was

never used in a commercial product. It contained: J

e the basic data-processing instructions (not including
multiplies)

e byte, word, and multi-word load/store instructions

e branch instructions, including a branch-and-link
instruction designed for subroutine calls

e a software interrupt instruction, for use in making
Operating System calls.

Version 1 only had a 26-bit address space, and is now
obsolete.

P. Bakowski 19



hitecture version 1

ersion 1 was implemented only by ARM1, and was
never used in a commercial product. It contained:

e the basic data-processing instructions (not including
multiplies)

e byte, word, and multi-word load/store instructions

e branch instructions, including a branch-and-link
instruction designed for subroutine calls

e a software interrupt instruction, for use in making
Operating System calls.

Version 1 only had a 26-bit address space, and is now
obsolete.

P. Bakowski 20



hitecture version 1

ersion 1 was implemented only by ARM1, and was
never used in a commercial product. It contained:

e the basic data-processing instructions (not including
multiplies)

e byte, word, and multi-word load/store instructions |

e branch instructions, including a branch-and-link
instruction designed for subroutine calls

e a software interrupt instruction, for use in making
Operating System calls.

Version 1 only had a 26-bit address space, and is now
obsolete.

P. Bakowski 21



hitecture version 1

ersion 1 was implemented only by ARM1, and was
never used in a commercial product. It contained:

e the basic data-processing instructions (not including
multiplies)

e byte, word, and multi-word load/store instructions

e branch instructions, including a branch-and-link
instruction designed for subroutine calls

e a software interrupt instruction, for use in making
Operating System calls.

Version 1 only had a 26-bit address space, and is now
obsolete.

P. Bakowski 22



hitecture version 1

ersion 1 was implemented only by ARM1, and was
never used in a commercial product. It contained:

e the basic data-processing instructions (not including
multiplies)

e byte, word, and multi-word load/store instructions

e branch instructions, including a branch-and-link
instruction designed for subroutine calls

e a software interrupt instruction, for use in making
Operating System calls.

Version 1 only had a 26-bit address space, and is now
obsolete.

P. Bakowski 23



hitecture version 1

ersion 1 was implemented only by ARM1, and was
never used in a commercial product. It contained:

e the basic data-processing instructions (not including
multiplies)

e byte, word, and multi-word load/store instructions

e branch instructions, including a branch-and-link
instruction designed for subroutine calls

e a software interrupt instruction, for use in making
Operating System calls.

Version 1 only had a 26-bit address space, and is now
obsolete.

P. Bakowski 24



%BM_aLcthecture version 2

Version 2 is extended architecture version 1 by
adding:

e multiply and multiply-accumulate instructions
e Coprocessor support
e two more banked registers in fast interrupt mode

e atomic load-and-store instructions called SWP and
SWPB (in a slightly later variant called version 2a)

Version 2 and 2a still only had a 26-bit address space,
and are now obsolete.

P. Bakowski 25



fﬂM_aLcthecture version 2

Version 2 is extended architecture version 1 by
adding:

e multiply and multiply-accumulate instructions |

e COprocessor support
e two more banked registers in fast interrupt mode

e atomic load-and-store instructions called SWP and
SWPB (in a slightly later variant called version 2a)

Version 2 and 2a still only had a 26-bit address space,
and are now obsolete.

P. Bakowski 26



fﬂM_aLcmtecture version 2

Version 2 is extended architecture version 1 by
adding:

e multiply and multiply-accumulate instructions

e coprocessor support |

e two more banked registers in fast interrupt mode

e atomic load-and-store instructions called SWP and
SWPB (in a slightly later variant called version 2a)

Version 2 and 2a still only had a 26-bit address space,
and are now obsolete.

P. Bakowski 27



fﬂM_aLcthecture version 2

Version 2 is extended architecture version 1 by
adding:

e multiply and multiply-accumulate instructions
e COprocessor support

e two more banked registers in fast interrupt mode J

e atomic load-and-store instructions called SWP and
SWPB (in a slightly later variant called version 2a)

Version 2 and 2a still only had a 26-bit address space,
and are now obsolete.

P. Bakowski 28



fﬂM_aLcthecture version 2

Version 2 is extended architecture version 1 by
adding:

e multiply and multiply-accumulate instructions
e Coprocessor support
e two more banked registers in fast interrupt mode

e atomic load-and-store instructions called SWP and
SWPB (in a slightly later variant called version 2a)

Version 2 and 2a still only had a 26-bit address space,
and are now obsolete.

P. Bakowski 29



%BM_aLcthecture version 2

Version 2 is extended architecture version 1 by
adding:

e multiply and multiply-accumulate instructions
e Coprocessor support
e two more banked registers in fast interrupt mode

e atomic load-and-store instructions called SWP and
SWPB (in a slightly later variant called version 2a)

Version 2 and 2a still only had a 26-bit address space,
and are now obsolete.

P. Bakowski 30



fﬂM_aLcthecture version 3

Version 3 extended the addressing range to 32 bits. J

Program status information which had previously been
stored in R15 was moved to a new Current Program
Status Register (CPSR), and Saved Program Status
Registers (SPSRs) where added to preserve the CPSR
contents when an exceptions occurred.

P. Bakowski 31



fﬂM_aLcthe_cture version 3

Version 3 extended the addressing range to 32 bits.

Program status information which had previously been )
stored in R15 was moved to a new Current Program
Status Register (CPSR), and Saved Program Status
Registers (SPSRs) where added to preserve the CPSR

contents when an exceptions occurred. )
CPSR =l SPSR
exception J

P. Bakowski 32



%BM_aLcthecture version 3

As a result, the following changes occurred to the J

Instruction set:

e two instructions (MRS and MSR) were added to
allow the new CPSR and SPSRs to be accessed.

e the functionality of instructions previously used to
return from exceptions was modified to allow them
to continue to be used for that purpose.

P. Bakowski 33



hitecture version 3

As a result, the following changes occurred to the
instruction set:

e two instructions (MRS and MSR) were added to
allow the new CPSR and SPSRs to be accessed.

e the functionality of instructions previously used to
return from exceptions was modified to allow them
to continue to be used for that purpose.

P. Bakowski 34



hitecture version 3

As a result, the following changes occurred to the
instruction set:

e two instructions (MRS and MSR) were added to
allow the new CPSR and SPSRs to be accessed.

e the functionality of instructions previously used to
return from exceptions was modified to allow them
to continue to be used for that purpose.

J

P. Bakowski 35



hitecture version 3

Version 3 also added two new processor modes in
order to make it possible to use Data Abort, Prefetch
Abort and Undefined Instruction exceptions effectively
iIn Operating System code. Y

Backwards-compatibility support for the 26-bit
architectures was obligatory in version 3, except in a
variant called version 3G.

The distinction between version 3 and 3G is now
obsolete.

P. Bakowski 36



hitecture version 3

Version 3 also added two new processor modes in
order to make it possible to use Data Abort, Prefetch
Abort and Undefined Instruction exceptions effectively
in Operating System code.

Backwards-compatibility support for the 26-bit
architectures was obligatory in version 3, except in a
variant called version 3G.

J

The distinction between version 3 and 3G is now
obsolete.

P. Bakowski 37



hitecture version 3

Version 3 also added two new processor modes in
order to make it possible to use Data Abort, Prefetch
Abort and Undefined Instruction exceptions effectively
in Operating System code.

Backwards-compatibility support for the 26-bit
architectures was obligatory in version 3, except in a
variant called version 3G.

The distinction between version 3 and 3G is now
obsolete.

P. Bakowski

38



:LO_memLeyy_oi 26-bit architecture

ARM v1, ARM v2, and ARM v2a are earlier versions of
the ARM architecture which implemented only a 26-bit
address space, and are known as 26-bit architectures.

J

ARM architecture version 3 and above implement a 32-
bit address space and are known as 32-bit
architectures.

For backwards compatibility, except for ARMv3G, all
variants of ARM architecture version 3 implement the
26-bit address space.

All not-T variants of ARM architecture version 4 and
above can optionally implement the 26-bit address
space.

P. Bakowski 39



Overview of 26-bit architecture

RM v1, ARM v2, and ARM v2a are earlier versions of
the ARM architecture which implemented only a 26-bit
address space, and are known as 26-bit architectures.

ARM architecture version 3 and above implement a 32-
bit address space and are known as 32-bit
architectures.

J

For backwards compatibility, except for ARMv3G, all
variants of ARM architecture version 3 implement the
26-bit address space.

All not-T variants of ARM architecture version 4 and
above can optionally implement the 26-bit address
space.

P. Bakowski 40



Overview of 26-bit architecture

RM v1, ARM v2, and ARM v2a are earlier versions of
the ARM architecture which implemented only a 26-bit
address space, and are known as 26-bit architectures.

ARM architecture version 3 and above implement a 32-
bit address space and are known as 32-bit
architectures.

For backwards compatibility, except for ARMv3G, all
variants of ARM architecture version 3 implement the
26-bit address space. y

All not-T variants of ARM architecture version 4 and
above can optionally implement the 26-bit address
space.

P. Bakowski 41




Overview of 26-bit architecture

RM v1, ARM v2, and ARM v2a are earlier versions of
the ARM architecture which implemented only a 26-bit
address space, and are known as 26-bit architectures.

ARM architecture version 3 and above implement a 32-
bit address space and are known as 32-bit
architectures.

For backwards compatibility, except for ARMv3G, all
variants of ARM architecture version 3 implement the
26-bit address space.

All not-T variants of ARM architecture version 4 and
above can optionally implement the 26-bit address
space.

J

P. Bakowski

42



gisters: 26-bit

RO

:

R1

24-bit program counter ‘.

26-bit architecture
J

\

P. Bakowski 43




gisters: 26-bit

RO

:

o | & = X
- - —_ -
I (8, 1) N Y

save context
register

24-bit program counter ‘.

26-bit architecture
J

\

P. Bakowski 44




g

isters: 32-bit

30 -bit program counter‘

32-bit architecture

P. Bakowski

45



*Gﬁit_;pmgram counter

The 26-bit architecture implement only a 24-bit
program counter in R15, which allows 64MB of
program space.

J

The 32-bit architecture have a 30-bit program counter
in R15 witch allows 4GB of program space on 32-bit
architectures.

R15
24-bit program counter

26-bit architecture

P. Bakowski

46



iaébit_;pmgram counter

The 26-bit architecture implement only a 24-bit
program counter in R15, which allows 64MB of
program space.

The 32-bit architecture have a 30-bit program counter
in R15 witch allows 4GB of program space on 32-bit
architectures.

J

R15
30-bit program counter

32-bit architecture
P. Bakowski

47



¥6i>it_;pmsessor modes

Only four processor modes are supported on 26-bit
architectures:

J

e user (0b00)
e FIQ (0b01)
e IRQ (0b10)
e supervisor (0b11)

R15
‘ 24-bit program counter

P. Bakowski

48



fﬁi)it_;pmsessor modes

Only four processor modes are supported on 26-bit
architectures:

e user (0b00) |

e FIQ (0b01)

e IRQ (0b10)

e supervisor (0b11)

R15
‘ 24-bit program counter (00

P. Bakowski

49



%ﬁﬂ;pmsgssor modes

Only four processor modes are supported on 26-bit
architectures:

e user (0b00)
e FIQ (0b01) — fast interruption request

e IRQ (0b10)
e supervisor (0b11)

R15
‘ 24-bit program counter |01

P. Bakowski

50



%ﬁﬂ;pmsgssor modes

Only four processor modes are supported on 26-bit
architectures:

e user (0b00)
e FIQ (0b01)
e JRQ (0b10) — interruption request

e supervisor (0b11)

R15
‘ 24-bit program counter |10

P. Bakowski

51



fﬁi)it_;pmsessor modes

Only four processor modes are supported on 26-bit
architectures:

e user (0b00)

e FIQ (0b01)

e IRQ (0b10)

e supervisor (0b11)

R15
‘ 24-bit program counter ‘11

P. Bakowski

52



%ﬁdojl_;_pr_osessor modes & flags

In the 26-bit architectures, the following are also
stored in register 15 :

e four condition flags (N,Z,C and V)
e the interrupt disable flags (I and F)
e two processor modes bits (M1 and M0)

R15
24-bit program counter

P. Bakowski 53



%ﬁﬂ;pmsgssor modes & flags

In the 26-bit architectures, the following are also

stored in register 15 :

e four condition flags (N,Z,C and V)

e the interrupt disable flags (I and F)
e two processor modes bits (M1 and M0)

negative

NZCV ‘ 24-bit program counter

P. Bakowski

54



%ﬁﬂ;pmsgssor modes & flags

In the 26-bit architectures, the following are also

stored in register 15 :

e four condition flags (N,Z,C and V)

e the interrupt disable flags (I and F)
e two processor modes bits (M1 and M0)

Z€ero

NZCV ‘ 24-bit program counter

P. Bakowski

55



%ﬁﬂ;pmsgssor modes & flags

In the 26-bit architectures, the following are also

stored in register 15 :

e four condition flags (N,Z,C and V)

e the interrupt disable flags (I and F)
e two processor modes bits (M1 and M0)

carry-out

NZCV ‘ 24-bit program counter

P. Bakowski

56



%ﬁﬂ;pmsgssor modes & flags

In the 26-bit architectures, the following are also

stored in register 15 :

e four condition flags (N,Z,C and V)

e the interrupt disable flags (I and F)
e two processor modes bits (M1 and M0)

overload

NZCV ‘ 24-bit program counter

P. Bakowski

57



%ﬁﬂ;pmsgssor modes & flags

In the 26-bit architectures, the following are also

stored in register 15 :

e four condition flags (N,Z,C and V)
e the interrupt disable flags (I and F)

e two processor modes bits (M1 and M0)

R15
IF 24-bit program counter

P. Bakowski

58



*Gi)it_;pmsessor modes & flags

In the 26-bit architectures, the following are also

stored in register 15 :

e four condition flags (N,Z,C and V)
e the interrupt disable flags (I and F)
e two processor modes bits (M1 and MO)

R15
24-bit program counter [M1MO

P. Bakowski

59



%ﬁﬂ;pmsgssor modes & flags

In the 26-bit architectures, the following are also
stored in register 15 :

e four condition flags (N,Z,C and V)
e the interrupt disable flags (I and F)
e two processor modes bits (M1 and MO)

PSR — program status register |
R15[31:26] R15[1:0]

‘ 24-bit program counter ‘ MIMO ‘

P. Bakowski 60



-bit_: processor exception

The precise effect of an exception on a 26-bit
architecture is the following:

J

e the banked version of R14 has bits [25:2] set to the
specified address, and bits [31:26, 1, 0] set to the
copies of the corresponding bits in R15.

e the I, F, M1, and MO bits are modified in the same
way as CPSR[7], CPSR[6], CPSR[1], and CPSR[O]
respectively, on a 32-bit architecture.

The I, F, M1, and MO bits cannot be written directly
when the processor is in User mode. In User mode
they are only changed by an exception occurring.

P. Bakowski

61



-bit : processor exception

‘e precise effect of an exception on a 26-bit
architecture is the following:

e the banked version of R14 has bits [25:2] set to the
specified address, and bits [31:26, 1, 0] set to the
copies of the corresponding bits in R15. y

e the I, F, M1, and MO bits are modified in the same
way as CPSR[7], CPSR[6], CPSR[1], and CPSR[O]
respectively, on a 32-bit architecture.

The I, F, M1, and MO bits cannot be written directly
when the processor is in User mode. In User mode
they are only changed by an exception occurring.

P. Bakowski 62



-bit : processor exception

‘e precise effect of an exception on a 26-bit
architecture is the following:

e the banked version of R14 has bits [25:2] set to the
specified address, and bits [31:26, 1, 0] set to the
copies of the corresponding bits in R15.

e the I, F, M1, and MO bits are modified in the same
way as CPSR[7], CPSR[6], CPSR[1], and CPSR[O]
respectively, on a 32-bit architecture. y

The I, F, M1, and MO bits cannot be written directly
when the processor is in User mode. In User mode
they are only changed by an exception occurring.

P. Bakowski 63



-bit_: processor exception

‘e precise effect of an exception on a 26-bit
architecture is the following:

e the banked version of R14 has bits [25:2] set to the
specified address, and bits [31:26, 1, 0] set to the
copies of the corresponding bits in R15.

e the I, F, M1, and MO bits are modified in the same
way as CPSR[7], CPSR[6], CPSR[1], and CPSR[O]
respectively, on a 32-bit architecture.

The I, F, M1, and MO bits cannot be written directly
when the processor is in User mode. In User mode
they are only changed by an exception occurring.

J

P. Bakowski

64



jFGJ)J’I_;_r_(-)agc!ing register 15

In 26-bit architecture the value of R15 is read in four
different ways:

e if R15 is specified in bits [19:16] of an instruction, only
the PC (bits [25:2]) is used. All other bits read as zero.

e if R15 is specified in bits [3:0] of an instruction, all 32 bits
are used.

e if R15 is stored using STR or STM, the value of the PC
(bits [25:2]) is implementation defined but all 32 bits of the
register are stored.

e all 32 bits are stored in the Link register (R14) after a
Branch with Link instruction or an exception entry.

P. Bakowski 65



-bit_: reading register 15

n 26-bit architecture the value of R15 is read in four
different ways:

e if R15 is specified in bits [19:16] of an instruction, only
the PC (bits [25:2]) is used. All other bits read as zero.

e if R15 is specified in bits [3:0] of an instruction, all 32 bits
are used.

e if R15 is stored using STR or STM, the value of the PC
(bits [25:2]) is implementation defined but all 32 bits of the
register are stored.

e all 32 bits are stored in the Link register (R14) after a
Branch with Link instruction or an exception entry.

P. Bakowski 66



-bit_: reading register 15

n 26-bit architecture the value of R15 is read in four
different ways:

e if R15 is specified in bits [19:16] of an instruction, only
the PC (bits [25:2]) is used. All other bits read as zero.

e if R15 is specified in bits [3:0] of an instruction, all 32 bits
are used.

e if R15 is stored using STR or STM, the value of the PC
(bits [25:2]) is implementation defined but all 32 bits of the
register are stored.

e all 32 bits are stored in the Link register (R14) after a
Branch with Link instruction or an exception entry.

P. Bakowski 67



-bit_: reading register 15

n 26-bit architecture the value of R15 is read in four
different ways:

e if R15 is specified in bits [19:16] of an instruction, only
the PC (bits [25:2]) is used. All other bits read as zero.

e if R15 is specified in bits [3:0] of an instruction, all 32 bits
are used.

o if R15 is stored using STR or STM, the value of the PC
(bits [25:2]) is implementation defined but all 32 bits of the
register are stored. y

e all 32 bits are stored in the Link register (R14) after a
Branch with Link instruction or an exception entry.

P. Bakowski 68




-bit_: reading register 15

n 26-bit architecture the value of R15 is read in four
different ways:

e if R15 is specified in bits [19:16] of an instruction, only
the PC (bits [25:2]) is used. All other bits read as zero.

e if R15 is specified in bits [3:0] of an instruction, all 32 bits
are used.

e if R15 is stored using STR or STM, the value of the PC
(bits [25:2]) is implementation defined but all 32 bits of the
register are stored.

e all 32 bits are stored in the Link register (R14) after a
Branch with Link instruction or an exception entry.

P. Bakowski 69



,‘Fﬁﬂojl_;_w_tiﬂng register 15

In 26-bit architecture the value of R15 is written in three
different ways:

The following instructions only write the PC part of R15,
leaving the PSR part unchanged:

- Data-processing instructions without the S bit set
- LDR instructions

- LDM instructions, other than Load Multiple with Restore
CPSR

P. Bakowski 70



-bit_: writing register 15

n 26-bit architecture the value of R15 is written in three
different ways:

The following instructions only write the PC part of R15,
leaving the PSR part unchanged:

- Data-processing instructions without the S bit set

- LDR instructions

- LDM instructions, other than Load Multiple with Restore
CPSR

P. Bakowski 71



-bit_: writing register 15

n 26-bit architecture the value of R15 is written in three
different ways:

The following instructions only write the PC part of R15,
leaving the PSR part unchanged:

- Data-processing instructions without the S bit set

- LDR instructions

- LDM instructions, other than Load Multiple with Restore
CPSR

P. Bakowski 72



-bit_: writing register 15

n 26-bit architecture the value of R15 is written in three
different ways:

The following instructions only write the PC part of R15,
leaving the PSR part unchanged:

- Data-processing instructions without the S bit set
- LDR instructions |

- LDM instructions, other than Load Multiple with Restore
CPSR

P. Bakowski 73



2-bit_: writing register 15

n 26-bit architecture the value of R15 is written in three
different ways:

The following instructions only write the PC part of R15,
leaving the PSR part unchanged:

- Data-processing instructions without the S bit set

- LDR instructions

- LDM instructions, other than Load Multiple with RestoreJ
CPSR

P. Bakowski 74



-bit_: writing register 15

n 26-bit architecture the value of R15 is written in three
different ways:

The following instructions write both the PC and PSR partJ
of R15:

- Data-processing instructions with the S bit set
- Load Multiple with Restore CPSR

P. Bakowski 75



=bit_: writing register 15

n 26-bit architecture the value of R15 is written in three
different ways:

The following instructions write both the PC and PSR part
of R15:

- Data-processing instructions with the S bit set

- Load Multiple with Restore CPSR

P. Bakowski 76



2-bit : writing register 15

n 26-bit architecture the value of R15 is written in three
different ways:

The following instructions write both the PC and PSR part
of R15:

- Data-processing instructions with the S bit set
- Load Multiple with Restore CPSR

P. Bakowski 77



¥6i>j1_;_w_tiﬂng PSP part in R15

Variants of the CMP, CMN, TST and TEQ
instructions write just the PSR part of R15 and
leave the PC part unchanged.

P. Bakowski 78




#ﬂgisjem_;read/write rules

When it is the Rn specifier in data-processing
instructions, or the base address for load and store
instructions, only the value of the program counter is

used , to simplify PC relative addressing and position-
independent code. Y,

R15[31:26] R15[1:0]
‘ 24-bit program counter ‘

P. Bakowski 79



%egisjer_‘l_i; read/write rules

R15[31:26] R15[1:0]
‘ 24-bit program counter ‘ MIMO ‘

When it is the Rm specifier in data-processing
instructions, all 32 bits are used in order to allow all
process status to be restored after a subroutine call

or exception by subroutine-return instructions such
as: MOVS PC, LR and LDM ... Y,

P. Bakowski 80



¥6mit;au¢dtess_ exception

In 26-bit architectures, all data addresses are checked
to ensure that they are between 0 and 64MB.

J

If a data address is produced with a 1 in any o} the top
6 bits, an address exceptions is generated.

Max. 64MB

6-bit 26-bit

P. Bakowski

81



fﬁﬂ:ﬂ;mmss_ exception

In 26-bit architectures, all data addresses are checked
to ensure that they are between 0 and 64MB.

6 bits, an address exceptions is generated.

"

ooor? |

6-bit 26-bit

If a data address is produced with a 1 in any of the top J

P. Bakowski 82



,FGJ)ﬂhagdudLess exception

When an address exception is generated, the following
actions are performed:

e R14 svc[25:2]) = address of instruction + 8
e R14 _svc[31:26,1,0] = R15[31:26,1,0]
e M[1:0] = O0bll ; supervisor mode

o F = unchanged
o] = 1 » (normal) interrupts disabled
e PC = 0x14

The address of the instruction which caused the address
exception is the value in R14 minus 8.

P. Bakowski 83



-bit;_ address exception

hen an address exception is generated, the following
actions are performed:

e R14 svc[25:2]) = address of instruction + 8
e R14 svc[31:26,1,0] = R15[31:26,1,0]

e M[1:0] = O0bll ; supervisor mode

o F = unchanged
o] = 1 » (normal) interrupts disabled
e PC = 0x14

The address of the instruction which caused the address
exception is the value in R14 minus 8.

P. Bakowski 84



-bit;_ address exception

hen an address exception is generated, the following
actions are performed:

e R14 svc[25:2]) = address of instruction + 8
e R14 svc[31:26,1,0] = R15[31:26,1,0]
e M[1:0] = O0bll ; supervisor mode

o F = unchanged
o] = 1 » (normal) interrupts disabled
e PC = 0x14

The address of the instruction which caused the address
exception is the value in R14 minus 8.

P. Bakowski 85



-bit;_address exception

hen an address exception is generated, the following
actions are performed:

e R14 svc[25:2]) = address of instruction + 8
e R14 _svc[31:26,1,0] = R15[31:26,1,0]
e M[1:0] = O0bll ; supervisor mode

o F = unchanged
o] = 1 » (normal) interrupts disabled
e PC = 0x14

The address of the instruction which caused the address
exception is the value in R14 minus 8.

P. Bakowski 86




-bit;_ address exception

hen an address exception is generated, the following
actions are performed:

e R14 svc[25:2]) = address of instruction + 8
e R14 _svc[31:26,1,0] = R15[31:26,1,0]
e M[1:0] = O0bll ; supervisor mode

o F = unchanged
o] = 1 » (normal) interrupts disabled
e PC = 0x14 - interruption routine address

The address of the instruction which caused the address
exception is the value in R14 minus 8.

P. Bakowski 87



%Gﬁit;tejuming from an exception

As this exception implies a programming error, it is not
usual to return form address exceptions, but if a return
IS required, use: y

SUBS PC,R14,#8

This restores both the PC and PSR (from R14_svc) and
returns to the instruction that generated the address
exception.

P. Bakowski 88



%Gﬁit;tejuming from an exception

As this exception implies a programming error, it is not
usual to return form address exceptions, but if a return
IS required, use:

SUBS PC,R14,#8

This restores both the PC and PSR (from R14_svc) and
returns to the instruction that generated the address
exception.

P. Bakowski 89



%Gﬁit;tejuming from an exception

As this exception implies a programming error, it is not
usual to return form address exceptions, but if a return
IS required, use:

SUBS PC,R14,#8

This restores both the PC and PSR (from R14 svc) and
returns to the instruction that generated the address
exception.

P. Bakowski 90



fﬁi)itmﬁmches

In 26-bit architectures, there are no restrictions on
branching backwards past location 0x0000000 or
forwards past location Ox3FFFFFF. y

Such branches wrap around to the other end of the 26-
bit address space, and so have a different target
address than they would had in a 32-bit architecture.

As a result, the signed 24-bit word offset in the B and BL
instructions allows any instruction in the 26-bit address
space to be branched to.

P. Bakowski 91



fﬁi)itmmmhes

In 26-bit architectures, there are no restrictions on
branching backwards past location 0x0000000 or
forwards past location 0x3FFFFFF.

Such branches wrap around to the other end of the 26-
bit address space, and so have a different target
address than they would had in a 32-bit architecture.

As a result, the signed 24-bit word offset in the B and BL
instructions allows any instruction in the 26-bit address
space to be branched to.

P. Bakowski 92



:Feﬂtmmhes

In 26-bit architectures, there are no restrictions on
branching backwards past location 0x0000000 or
forwards past location 0x3FFFFFF.

Such branches wrap around to the other end of the 26-
bit address space, and so have a different target
address than they would had in a 32-bit architecture.

As a result, the signed 24-bit word offset in the B and BL
instructions allows any instruction in the 26-bit address
space to be branched to. y

P. Bakowski 93



%ﬁﬂlﬂsus 32-bit architectures

26-bit architectures

All process status (namely the condition flags, interrupt
status and processor mode) can be preserved across
subroutine calls and nested exceptions without adding
any instructions to the entry or exit sequence.

J

P. Bakowski 94



%ﬁﬂlﬂsus 32-bit architectures

32-bit architectures

This process status functionality is given up to allow 32-
bit instruction addresses to be used.

For exceptions, processor status is preserved in the
SPSRs, and if nested exceptions using the same SPSR
can occur, extra instructions are used to preserve this
status in memory.

For subroutine calls, processor status can be preserved
across the subroutine call by using extra instructions,
but this is not normally done.

P. Bakowski 95



%Gﬁit_wﬁsus 32-bit architectures

32-bit architectures

This process status functionality is given up to allow 32-
bit instruction addresses to be used.

For exceptions, processor status is preserved in the
SPSRs, and if nested exceptions using the same SPSR
can occur, extra instructions are used to preserve this
status in memory. Y

For subroutine calls, processor status can be preserved
across the subroutine call by using extra instructions,
but this is not normally done.

P. Bakowski 96



%ﬁﬂlﬂsus 32-bit architectures

32-bit architectures

This process status functionality is given up to allow 32-
bit instruction addresses to be used.

For exceptions, processor status is preserved in the
SPSRs, and if nested exceptions using the same SPSR
can occur, extra instructions are used to preserve this
status in memory.

For subroutine calls, processor status can be preserved
across the subroutine call by using extra instructions,
but this is not normally done.

P. Bakowski 97



e

mACORN,RISC1,and ARM |

m ARM architecture versions

m ARMv1, ARMv2 and 26-bit addressing
m ARMv3 and 32-bit addressing

m Overview of the architectures

P. Bakowski

98



e

m ACORN, RISC 1, and ARM

m ARM architecture versions J

m ARMv1, ARMv2 and 26-bit addressing
m ARMv3 and 32-bit addressing

m Overview of the architectures

P. Bakowski

99



=

m ACORN, RISC 1, and ARM

m ARM architecture versions

m ARMv1, ARMv2 and 26-bit addressing |
m ARMv3 and 32-bit addressing

m Overview of the architectures

P. Bakowski 100



o

m ACORN, RISC 1, and ARM

m ARM architecture versions

m ARMv1, ARMv2 and 26-bit addressing
m ARMv3 and 32-bit addressing |

m Overview of the architectures

P. Bakowski 101



-

m ACORN, RISC 1, and ARM

m ARM architecture versions

m ARMv1, ARMv2 and 26-bit addressing
m ARMv3 and 32-bit addressing

m Overview of the architectures J

P. Bakowski 102



