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fﬂM_aLcmtecture versions

The ARM instruction set architecture has evolved
significantly since it was first developed, and will
continue to be developed in the future. )

In order to be precise about which instructions exist
in any particular ARM implementation, five major
versions of the instruction set have been defined to
date.

These are denoted by the version numbers 1 to 6.
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@BM_aLcthecture version 1

1 Version 1 was implemented only by ARM1, and was

never used in a commercial product. It contained: J

e the basic data-processing instructions (not including
multiplies)

e byte, word, and multi-word load/store instructions

e branch instructions, including a branch-and-link
instruction designed for subroutine calls

e a software interrupt instruction, for use in making
Operating System calls.

Version 1 only had a 26-bit address space, and is now
obsolete.
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%BM_aLcthecture version 2

Version 2 is extended architecture version 1 by
adding:

e multiply and multiply-accumulate instructions
e Coprocessor support
e two more banked registers in fast interrupt mode

e atomic load-and-store instructions called SWP and
SWPB (in a slightly later variant called version 2a)

Version 2 and 2a still only had a 26-bit address space,
and are now obsolete.
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fﬂM_aLcthecture version 3

Version 3 extended the addressing range to 32 bits. J

Program status information which had previously been
stored in R15 was moved to a new Current Program
Status Register (CPSR), and Saved Program Status
Registers (SPSRs) where added to preserve the CPSR
contents when an exceptions occurred.
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%BM_aLcthecture version 3

As a result, the following changes occurred to the J

Instruction set:

e two instructions (MRS and MSR) were added to
allow the new CPSR and SPSRs to be accessed.

e the functionality of instructions previously used to
return from exceptions was modified to allow them
to continue to be used for that purpose.
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hitecture version 3

Version 3 also added two new processor modes in
order to make it possible to use Data Abort, Prefetch
Abort and Undefined Instruction exceptions effectively
iIn Operating System code. Y

Backwards-compatibility support for the 26-bit
architectures was obligatory in version 3, except in a
variant called version 3G.

The distinction between version 3 and 3G is now
obsolete.

P. Bakowski 36



hitecture version 3

Version 3 also added two new processor modes in
order to make it possible to use Data Abort, Prefetch
Abort and Undefined Instruction exceptions effectively
in Operating System code.

Backwards-compatibility support for the 26-bit
architectures was obligatory in version 3, except in a
variant called version 3G.

J

The distinction between version 3 and 3G is now
obsolete.

P. Bakowski 37



hitecture version 3

Version 3 also added two new processor modes in
order to make it possible to use Data Abort, Prefetch
Abort and Undefined Instruction exceptions effectively
in Operating System code.

Backwards-compatibility support for the 26-bit
architectures was obligatory in version 3, except in a
variant called version 3G.

The distinction between version 3 and 3G is now
obsolete.

P. Bakowski

38



:LO_memLeyy_oi 26-bit architecture

ARM v1, ARM v2, and ARM v2a are earlier versions of
the ARM architecture which implemented only a 26-bit
address space, and are known as 26-bit architectures.

J

ARM architecture version 3 and above implement a 32-
bit address space and are known as 32-bit
architectures.

For backwards compatibility, except for ARMv3G, all
variants of ARM architecture version 3 implement the
26-bit address space.

All not-T variants of ARM architecture version 4 and
above can optionally implement the 26-bit address
space.
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*Gﬁit_;pmgram counter

The 26-bit architecture implement only a 24-bit
program counter in R15, which allows 64MB of
program space.

J

The 32-bit architecture have a 30-bit program counter
in R15 witch allows 4GB of program space on 32-bit
architectures.

R15
24-bit program counter

26-bit architecture

P. Bakowski

46



iaébit_;pmgram counter

The 26-bit architecture implement only a 24-bit
program counter in R15, which allows 64MB of
program space.

The 32-bit architecture have a 30-bit program counter
in R15 witch allows 4GB of program space on 32-bit
architectures.

J

R15
30-bit program counter

32-bit architecture
P. Bakowski

47



¥6i>it_;pmsessor modes

Only four processor modes are supported on 26-bit
architectures:

J

e user (0b00)
e FIQ (0b01)
e IRQ (0b10)
e supervisor (0b11)

R15
‘ 24-bit program counter
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%ﬁdojl_;_pr_osessor modes & flags

In the 26-bit architectures, the following are also
stored in register 15 :

e four condition flags (N,Z,C and V)
e the interrupt disable flags (I and F)
e two processor modes bits (M1 and M0)

R15
24-bit program counter
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In the 26-bit architectures, the following are also
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%ﬁﬂ;pmsgssor modes & flags

In the 26-bit architectures, the following are also
stored in register 15 :

e four condition flags (N,Z,C and V)
e the interrupt disable flags (I and F)
e two processor modes bits (M1 and MO)

PSR — program status register |
R15[31:26] R15[1:0]

‘ 24-bit program counter ‘ MIMO ‘
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-bit_: processor exception

The precise effect of an exception on a 26-bit
architecture is the following:

J

e the banked version of R14 has bits [25:2] set to the
specified address, and bits [31:26, 1, 0] set to the
copies of the corresponding bits in R15.

e the I, F, M1, and MO bits are modified in the same
way as CPSR[7], CPSR[6], CPSR[1], and CPSR[O]
respectively, on a 32-bit architecture.

The I, F, M1, and MO bits cannot be written directly
when the processor is in User mode. In User mode
they are only changed by an exception occurring.

P. Bakowski
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jFGJ)J’I_;_r_(-)agc!ing register 15

In 26-bit architecture the value of R15 is read in four
different ways:

e if R15 is specified in bits [19:16] of an instruction, only
the PC (bits [25:2]) is used. All other bits read as zero.

e if R15 is specified in bits [3:0] of an instruction, all 32 bits
are used.

e if R15 is stored using STR or STM, the value of the PC
(bits [25:2]) is implementation defined but all 32 bits of the
register are stored.

e all 32 bits are stored in the Link register (R14) after a
Branch with Link instruction or an exception entry.
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,‘Fﬁﬂojl_;_w_tiﬂng register 15

In 26-bit architecture the value of R15 is written in three
different ways:

The following instructions only write the PC part of R15,
leaving the PSR part unchanged:

- Data-processing instructions without the S bit set
- LDR instructions

- LDM instructions, other than Load Multiple with Restore
CPSR
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2-bit_: writing register 15

n 26-bit architecture the value of R15 is written in three
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¥6i>j1_;_w_tiﬂng PSP part in R15

Variants of the CMP, CMN, TST and TEQ
instructions write just the PSR part of R15 and
leave the PC part unchanged.
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#ﬂgisjem_;read/write rules

When it is the Rn specifier in data-processing
instructions, or the base address for load and store
instructions, only the value of the program counter is

used , to simplify PC relative addressing and position-
independent code. Y,

R15[31:26] R15[1:0]
‘ 24-bit program counter ‘
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%egisjer_‘l_i; read/write rules

R15[31:26] R15[1:0]
‘ 24-bit program counter ‘ MIMO ‘

When it is the Rm specifier in data-processing
instructions, all 32 bits are used in order to allow all
process status to be restored after a subroutine call

or exception by subroutine-return instructions such
as: MOVS PC, LR and LDM ... Y,
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¥6mit;au¢dtess_ exception

In 26-bit architectures, all data addresses are checked
to ensure that they are between 0 and 64MB.

J

If a data address is produced with a 1 in any o} the top
6 bits, an address exceptions is generated.

Max. 64MB

6-bit 26-bit

P. Bakowski
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fﬁﬂ:ﬂ;mmss_ exception

In 26-bit architectures, all data addresses are checked
to ensure that they are between 0 and 64MB.

6 bits, an address exceptions is generated.

"

ooor? |

6-bit 26-bit

If a data address is produced with a 1 in any of the top J

P. Bakowski 82



,FGJ)ﬂhagdudLess exception

When an address exception is generated, the following
actions are performed:

e R14 svc[25:2]) = address of instruction + 8
e R14 _svc[31:26,1,0] = R15[31:26,1,0]
e M[1:0] = O0bll ; supervisor mode

o F = unchanged
o] = 1 » (normal) interrupts disabled
e PC = 0x14

The address of the instruction which caused the address
exception is the value in R14 minus 8.
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-bit;_ address exception

hen an address exception is generated, the following
actions are performed:

e R14 svc[25:2]) = address of instruction + 8
e R14 svc[31:26,1,0] = R15[31:26,1,0]

e M[1:0] = O0bll ; supervisor mode

o F = unchanged
o] = 1 » (normal) interrupts disabled
e PC = 0x14

The address of the instruction which caused the address
exception is the value in R14 minus 8.
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-bit;_ address exception

hen an address exception is generated, the following
actions are performed:

e R14 svc[25:2]) = address of instruction + 8
e R14 svc[31:26,1,0] = R15[31:26,1,0]
e M[1:0] = O0bll ; supervisor mode

o F = unchanged
o] = 1 » (normal) interrupts disabled
e PC = 0x14

The address of the instruction which caused the address
exception is the value in R14 minus 8.
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-bit;_address exception

hen an address exception is generated, the following
actions are performed:

e R14 svc[25:2]) = address of instruction + 8
e R14 _svc[31:26,1,0] = R15[31:26,1,0]
e M[1:0] = O0bll ; supervisor mode

o F = unchanged
o] = 1 » (normal) interrupts disabled
e PC = 0x14

The address of the instruction which caused the address
exception is the value in R14 minus 8.
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-bit;_ address exception

hen an address exception is generated, the following
actions are performed:

e R14 svc[25:2]) = address of instruction + 8
e R14 _svc[31:26,1,0] = R15[31:26,1,0]
e M[1:0] = O0bll ; supervisor mode

o F = unchanged
o] = 1 » (normal) interrupts disabled
e PC = 0x14 - interruption routine address

The address of the instruction which caused the address
exception is the value in R14 minus 8.
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%Gﬁit;tejuming from an exception

As this exception implies a programming error, it is not
usual to return form address exceptions, but if a return
IS required, use: y

SUBS PC,R14,#8

This restores both the PC and PSR (from R14_svc) and
returns to the instruction that generated the address
exception.
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%Gﬁit;tejuming from an exception

As this exception implies a programming error, it is not
usual to return form address exceptions, but if a return
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SUBS PC,R14,#8

This restores both the PC and PSR (from R14_svc) and
returns to the instruction that generated the address
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%Gﬁit;tejuming from an exception

As this exception implies a programming error, it is not
usual to return form address exceptions, but if a return
IS required, use:

SUBS PC,R14,#8

This restores both the PC and PSR (from R14 svc) and
returns to the instruction that generated the address
exception.
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fﬁi)itmﬁmches

In 26-bit architectures, there are no restrictions on
branching backwards past location 0x0000000 or
forwards past location Ox3FFFFFF. y

Such branches wrap around to the other end of the 26-
bit address space, and so have a different target
address than they would had in a 32-bit architecture.

As a result, the signed 24-bit word offset in the B and BL
instructions allows any instruction in the 26-bit address
space to be branched to.
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fﬁi)itmmmhes

In 26-bit architectures, there are no restrictions on
branching backwards past location 0x0000000 or
forwards past location 0x3FFFFFF.

Such branches wrap around to the other end of the 26-
bit address space, and so have a different target
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:Feﬂtmmhes

In 26-bit architectures, there are no restrictions on
branching backwards past location 0x0000000 or
forwards past location 0x3FFFFFF.

Such branches wrap around to the other end of the 26-
bit address space, and so have a different target
address than they would had in a 32-bit architecture.

As a result, the signed 24-bit word offset in the B and BL
instructions allows any instruction in the 26-bit address
space to be branched to. y
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%ﬁﬂlﬂsus 32-bit architectures

26-bit architectures

All process status (namely the condition flags, interrupt
status and processor mode) can be preserved across
subroutine calls and nested exceptions without adding
any instructions to the entry or exit sequence.

J
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%ﬁﬂlﬂsus 32-bit architectures

32-bit architectures

This process status functionality is given up to allow 32-
bit instruction addresses to be used.

For exceptions, processor status is preserved in the
SPSRs, and if nested exceptions using the same SPSR
can occur, extra instructions are used to preserve this
status in memory.

For subroutine calls, processor status can be preserved
across the subroutine call by using extra instructions,
but this is not normally done.
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%Gﬁit_wﬁsus 32-bit architectures

32-bit architectures

This process status functionality is given up to allow 32-
bit instruction addresses to be used.

For exceptions, processor status is preserved in the
SPSRs, and if nested exceptions using the same SPSR
can occur, extra instructions are used to preserve this
status in memory. Y

For subroutine calls, processor status can be preserved
across the subroutine call by using extra instructions,
but this is not normally done.
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%ﬁﬂlﬂsus 32-bit architectures

32-bit architectures

This process status functionality is given up to allow 32-
bit instruction addresses to be used.

For exceptions, processor status is preserved in the
SPSRs, and if nested exceptions using the same SPSR
can occur, extra instructions are used to preserve this
status in memory.

For subroutine calls, processor status can be preserved
across the subroutine call by using extra instructions,
but this is not normally done.
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