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%BM_Legisjeman k

The register bank, which stores the processor
state.

rO0
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%BM_Legisjema nk

It has two read ports and one write port which

can each be usedNp access any register, plus an
additional read port\and an additional write port
that give special acceSgs to r15, the program Y
counter.
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%BM_bALLeLsmﬂe r

The barrel shifter, which can shift or rotate one
operand by any number of bits.

number of bits
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%BM_ALU

The ALU, which performs the arithmetic and logic
functions required by the instruction set.

operands

functions

ﬁ
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%BMj;sia_ge_pjpgline

The address register and incrementer, which select
and hold addresses and generate sequential
addresses when required.

Incrementer
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%BMj;sjage_pjpeline

The data registers, which hold data passing to and
from memory.

data instructions

data In register

to/from memory d[31:0]
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%BMj;sjage_pipeline

The instruction decoder and associated control logic.

J

instructions
control path

u control signals u

data path J

P. Bakowski
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iihLee_sjage_pjpeline : ARM 1,2,3

FETCH; the instruction is fetched from memory and
placed in the instruction pipeline.

to instruction

fetch

—

clock cycle
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gihLeg_sjauge_pjpeline : ARM 1,2,3

DECODE; the instruction is decoded and the
datapath control signals prepared for the next cycle.

instruction register ‘

v

control path

u control signals u

fetch decode ‘

JC'

LD

tch
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ﬁ:hLeg_sjage_pjpeline . ARM 1,2,3

EXECUTE; the instruction controls the datapath; the
register bank is read, an operand shifted the ALU
result generated and written back into a destination
register. Y

l‘ control signals l‘

data path

decode ‘ execute

fetch decode
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iihLee_sjage_pjpeline : ARM 1,2,3

iInstruction throughput : 1 instruction per clock cycle J

instruction latency : 3 clock cycles

—

fetch

decode ‘ execute

fetch

ﬁ
clock cycle

P. Bakowski
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iihLee_sjage_pjpeline : ARM 1,2,3

instruction throughput : 1 instruction per clock cycle

instruction latency : 3 clock cycles |

— >

decode ‘ execute

—

fetch

fetch decode execute

decode execute
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2,3 architecture

instruction register |1— Fae]

control path |

-

Q

fd

3, PC

=

()

L L]

b= register
—  bank

d[31:0]

b Bakowsk M — multiplier, BS — barrel shifter -



mesmjgcutlon

| fetch | decode |

y

fetch

STR — store instruction needs two execution cycles:

)

e address calculation cycle and

e data transfer cycle

P. Bakowski
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wum_cy_cje_e)ges ution

fe decode ‘ execute ‘

decode

address ‘

address calculation cycle and J

e data transfer cycle

P. Bakowski
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i_.cycle execution

4 clock cycles
—

decode ‘ execute

decode address

transfer

decode |execute

decode

e address calculation cyclegfand

e data transfer cycle
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i_.cycle execution

4 clock cycles
—

| decode ‘ execute

decode address ‘transfer

fetcr

—

decode |execute

fetch T decode

Attention: only one
memory transfer

e data transfer cycle per clock cycle

e address calculation cycle and
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%msessgmerformance

The time 7, required to execute a given program
IS given by:

T=(Nye *CPD

/V,-,7 ot - umber of instructions in the program

CPI - clock cycles per instruction

f

clk - clock frequency
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%msessgmerformance

The time 7, required to execute a given program
IS given by:

I= ( /v/nst *CP -[)/ f;/k

/V,-,7 st - umber of instructions in the program

CPI - clock cycles per instruction (throughput) J

f

clk - clock frequency
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%msessngerformance

The time 7, required to execute a given program
IS given by:

I= ( /v/nst *CP [)/ f;/k

/V,-,7 st - umber of instructions in the program

CPI - clock cycles per instruction

f

clk - clock frequency J
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%msessgmerformance

Since /. is constant for a given program there are
only two ways to increase performance:

J

e increase the clock rate, /.

e reduce the average number of clock cycles per
instruction, CPL.

P. Bakowski
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‘LCLQQK_Late_iLLcrease

" Increase the clock rate, f,. This requires the logic in

each pipeline stage to be simplified and, therefore,
the number of pipeline stages to be increased.

J

stagel ‘ stage2 stage3
m——  clock cycle — 3 stages
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‘LCLQQK_LaJe_'LLLcrease

Increase the clock rate, £,. This requires the logic in

each pipeline stage to be simplified and, therefore,
the number of pipeline stages to be increased.

J

stagel ‘ stage2 ‘ stage3 ‘
m——  clock cycle — 3 stages

stagel ‘ stage2 ‘ stage3 ‘ stage4 ‘ stages ‘
=g clock cycle — 5 stages
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‘Lcmsk_taje_mcrease

1 Note that the clock rate to be used depends heavily
on the implementation technology.

stagel ‘ stage2 ‘ stage3 ‘
m——  clock cycle — 3 stages

stagel‘ stage2 ‘ stage3 ‘
m—P> clock cycle — 3 stages

new implementation technology
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,ﬁlkmemmware resources

Reduce the average number of clock cycles per
instruction, CPI. This requires the introduction of more
parallelism that means more hardware resources to be

J

used in a given clock cycle.

vt v 1

D/I M DM ‘ IM ‘
data read or data read and
instruction fetch instruction fetch

P. Bakowski
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,L5;sjage_pjpeline organization

1 Higher performance ARM cores employ a 5-stage
pipeline and have separate instruction and data
memories. y

Breaking instruction execution down into five stages
rather than three reduces the maximum work which
must be completed in a clock cycle, and hence allows
a higher clock frequency to be used.

The separate instruction and data memories seen as
separate caches connected to a unified instruction and
data main memory allow a significant reduction in the
core's CPI.
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tch stage

decode ‘execute‘ buffer ‘ write ‘

FETCH - the instruction is fetched from memory and
placed in the instruction cache.

O
next PC = N e to decoder
- l—y
Q
O
M
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code stage

decode ‘execute‘ buffer ‘ write ‘

4

DECODE - the instruction is decoded and register
operands read from the register file.

W
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code stage

fetch ‘decode ‘execute‘ buffer ‘write ‘

4

There are three operand read ports in the register file,
so most instructions can obtain all their operands in
one cycle.

J

register
file

22

I - decode

I

P. Bakowski
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clute stage

decode ‘execute‘ buffer ‘ write ‘

i

EXECUTE - an operand is shifted and the ALU result
generated.

register
file
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clute stage

decode ‘execute‘ buffer ‘ write ‘

i

EXECUTE - an operand is shifted and the ALU result
generated.

register
file
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clute stage

decode ‘execute‘ buffer ‘ write ‘

i

If the instruction is a load or store the memory
address is computed in the ALU.

register
file

P>
@

ALU

+4
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r stage

decode ‘execute‘ buffer ‘ write ‘

BUFFER data - data memory is accessed if required.
Otherwise the ALU result is simply buffered for one clock
cycle to give the same pipeline flow for all instructions.

M

D cache

J

rotation/sign
axtension
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ite back stage

decode ‘execute‘ buffer ‘ write ‘

I

WRITE-back; the results generated by the instruction
are written back to the register file, including any data
loaded from memory.

=P

register

file
ALU
—

rotation/sign

D cache -]

P. Bakowski 41
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,lpaja_tomar_ding
In the 5-stage pipeline instruction execution is spread
across three pipeline stages, the only way to resolve
data dependencies without stalling the pipeline is to
introduce forwarding paths. y

fetch ‘decode ‘execute‘ buffer ‘write ‘J

P. Bakowski 42



a_forwarding
to register file |
fetch ‘decode ‘execute buffer wrlte H—I

\

fetch ‘decode ‘execute‘ buffer ‘write ‘

Data dependencies arise when an instruction
needs to use the result of one of its predecessors
before that result has returned to the register file.

P. Bakowski
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a_forwarding

r Forwarding paths (by-pass) allow the intermediate
results to be passed between stages as soon as they are
available, in the 5-stage ARM pipeline each of the three
source operands can be forwarded from any of three
intermediate result registers )

to register file |

fetch ‘decode ‘execute buffer ‘write H—I

l by-pass paths |

fetch ‘decode ‘execute‘ buffer ‘write ‘
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%C_o.r_ganjzation - compatibility

The programming behavior of the PC implemented
through r15 is based on the operational characteristics
of the 3-stage ARM pipeline.

J

Basically the 5-stage pipeline reads the instruction
operands one stage earlier and that is incompatible with
3-stage design.
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%C_o_r_gamzation - compatibility

The programming behavior of the PC implemented
through r15 is based on the operational characteristics
of the 3-stage ARM pipeline.

Basically the 5-stage pipeline reads the instruction
operands one stage earlier and that is incompatible with
3-stage design.

J
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%C_o_r_gamsation - solution

This problem is resolved by the incrementation of the PC
value from the fetch stage in the decode stage,
bypassing the pipeline register between the two stages.

J

PC+4 for the next instruction is equal to PC+8 for the
current instruction (4 bytes farther), so the correct r15
value is obtained without additional hardware.

P. Bakowski 47



%C_o_r_ganisation - solution

PC+4 for the next instruction is equal to PC+8 for the
current instruction (4 bytes farther), so the correct r15
value is obtained without additional hardware.

y,
next
PC+4
- register
2 | file
= Nt e to decoder
-
v
= r15 |
next PC+8
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%BM_pLogmmming model

The Instruction Set Architecture (ISA) defines the
operations that the programmer can use to change the
state of the system incorporating the processor.

This state usually comprises the values of the data items
in the visible registers and the memory.

Each instruction performs a defined transformation from
the state before the instruction is executed to the state
after it has completed.

P. Bakowski 49
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Wystem

ARM memory may be viewed as a Ilnear array of
bytes numbered from zero up to 232.1.

J

232

P. Bakowski
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%BM_memgLy subsystem

Data items may be 8-bit bytes, 16-bit half-words or
32-bit words.

232-1 |

bytes words

P. Bakowski 53



fBM_memoLy subsystem

Words are always aligned on 4-byte boundaries (the
two least significant address bits are zero) and half-
words are aligned on even byte boundaries.

J

2324 | | byte number

1 \*00\

word address
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%BM_[DEJDDLV subsystem

Words are always aligned on 4-byte boundaries (the
two least significant address bits are zero) and half-
words are aligned on even byte boundaries.

J

224 | |

little endian organization |

—
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%BM_IQAd;sIm‘e architecture

The processing instruction (add, subtract, and so on)
take the values from the registers and always place
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%BM_IDAd;sjme architecture

The processing instruction (add, subtract, and so on)
take the values from the registers and always place
the results into a register. y

AN -

register
file

ALU

+4

P. Bakowski 57



LIABM load-store architecture

The only instructions which apply to memory state are ones
which copy memory values into register (load instructions)
or copy register values into memory (store instructions).

J

register r—— D -cache
file

-_u
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LIABM load-store architecture

The only instructions which apply to memory state are ones
which copy memory values into register (load instructions)
or copy register values into memory (store instructions).

J

register r—— D -cache
file

ﬁ

P. Bakowski 59



%BM_insjmc_tions

In general the ARM instructions fall into one of the
following three categories:
e data processing instructions

e data transfer instructions
e control flow instructions
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%BM_inslr_ucjions

In general the ARM instructions fall into one of the
following three categories:
e data processing instructions

e data transfer instructions
e control flow instructions |
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Wmmcessing

Data processing instructions:

these use and change only register values;

P. Bakowski
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a_processing

For example, an instruction can add two registers and
place the result in a register.

register
file

ALUbus

+4
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,}ammma_t;ansfer

Data transfer instructions copy memory values into
registers (load instructions) or copy register values
into memory (store instructions);

J

An additional form, useful only in systems code,
exchanges a memory value with a register value.

P. Bakowski
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,}ammma_t;ansfer

Data transfer instructions copy memory values into
registers (load instructions) or copy register values
into memory (store instructions);

An additional form, useful only in systems code,
exchanges a memory value with a register value.
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fBM_dﬁla_tLansfer

Data transfer instructions copy memory values into
registers (load instructions) or copy register values
into memory (store instructions);

An additional form, useful only in systems code,
exchanges a memory value with a register value.

e.g. test and set instruction

N—

P. Bakowski
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%BM_\:meoLﬂow

Control flow instructions cause execution to switch to

a different address, either permanently (branch
iInstructions) or saving a return address to resume the
original sequence (branch and link instructions) or

trapping into system code (supervisor calls). )

P. Bakowski
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Control flow instructions cause execution to switch to

a different address, either permanently (branch
instructions) or saving a return address to resume the
original sequence (branch and link instructions) or

trapping into system code (supervisor calls). )

link address

P. Bakowski
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%BM_\:meoLflow

Control flow instructions cause execution to switch to

a different address, either permanently (branch
instructions) or saving a return address to resume the
original sequence (branch and link instructions) or

trapping into system code (supervisor calls). Y

link address

system code

P. Bakowski
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%BM_supgmisor mode

The ARM processor supports a protected supervisor
mode. The protection mechanism ensures that user
code cannot gain supervisor privileges without
appropriate checks being carried out to ensure that the
_code is not attempting illegal operations. )

)

illegal operation ?

user code
P. Bakowski 72



upervisor mode

The upshot of this for the user-level programmer is that
system-level functions can only be accessed through
specified supervisor call.

J

system/supervisor call

system code

user code
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%BM_V_O_pLQgramming

The ARM handles I/0 (input/output) peripherals (such
as disk controllers, network interfaces, and so on) as
memory-mapped devices with interrupt support. y

®

memory-mapped devices
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%BM_V_O_pLogramming

The internal registers in these devices appear as
addressable locations within the ARM's memory map
and may be read and written using the same (load-

store) instructions as any other memory locations. y
‘ 1 L‘ sore
y
% N B
% . load
s 2 0a
% L
% L

memory locations |
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%BM_V_O_imgﬂuptions

Peripherals may attract the processor's attention by
making an interrupt request using either the normal
interrupt (IRQ) or the fast interrupt (FIQ) input.

J

to CPU - FIQ to CPU -
IRQ

Q/IV:;/"'
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%BM_V_O_EMBLLuptions

Both interrupt inputs are level-sensitive and maskable.
Normally most interrupt sources share the IRQ input,
with just one or two time-critical sources connected to

the higher-priority FIQ input.

J

P ‘
+

P. Bakowski
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%BM_V_OJnlerruptions

Some systems may include direct memory access
(DMA) hardware external to the processor to handle
high-bandwidth traffic.

J

system bus

I lﬁl . wan==71" DMA traffic
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%BM_eLcepj ions

The ARM architecture supports a range of :

interrupts
traps
supervisor calls

all grouped under the general heading of exceptions.

P. Bakowski
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%BM_eLcepj ions

The ARM architecture supports a range of :

interrupts

traps |

supervisor calls

all grouped under the general heading of exceptions.
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%BM_eLcepj ions

The ARM architecture supports a range of :

interrupts
traps
supervisor calls

all grouped under the general heading of exceptions.

P. Bakowski
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%BM_eLcepjions

The general way of exception handling is the same in all J
cases:

e the current state is saved by copying the PC into
rl4_exc and the CPSR into SPSR_exc (where exc stands
for the exception type);

e the processor operating mode is changed to the
appropriate exception mode;

e the PC is forced to a value between 00, and 1C,,, the
particular value depending on the type of exception.

P. Bakowski 84
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truction execution

instruction register |1— Fae]

control path |

-

Q

fd

3, PC

=

()

L L]

b= register
—  bank

d[31:0]

b Bakowsk M — multiplier, BS — barrel shifter o8



a[31:0]

a_processing instruction

register — register operations J

I3
3, PC
=
v
-~ register
-
=) bank Abus
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a[31:0]

a_processing instruction

register — immediate operations J

ir register

-

Q

fd

3, PC

=

Q

L L]

LE’ register
—  bank
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a[31:0]

tore instruction

compute address operation J

ir register

-

Q

fd

3, PC

=

Q

L L]

LE’ register
—  bank

new address |

P. Bakowski 91



tore instruction

store data — auto-index J

ir register

=)
-
) 9
© 3 PC
=
Q
;_ ]
LE’ register
—  bank

auto-index |
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#mncilnsimﬂon

compute branch address J

ir register

=)
-
) 9
© S PC
=
Q
;_ [
LE’ register
—  bank

branch address |

P. Bakowski 93



#mncilnsimﬂon

a[31:0]

store return address J

ir register

| .

)

fd

3, PC

E [

g register
= bank

R14

return address |
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m ARM register bank

m ARM barrel shifter and ALU
m ARM 3-stage and 5-stage pipelines
m ARM programming model

m ARM instructions
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