ARM processor
organization

Bakowski

bako@ieee.org

%BM_Legisjeman k

The register bank, which stores the processor
state.

rO0

P. Bakowski

%BM_Legisjema nk

It has two read ports and one write port which

can each be usedNp access any register, plus an
additional read port\and an additional write port
that give special acceSgs to r15, the program Y
counter.

P. Bakowski 3

%BM_Legisjema nk

It has two read ports and one write port which
can each be used to agg€ss any register, plus an
additional read portg#nd an additional write port
that give specialgfCcess to r15, the program

counter.

P. Bakowski

%BM_Legjsjerja nk

It has two read ports and one write port which
can each be used to access any register, plus an
additional read port and an additional write port
that give 3pecial access to r15, the program

.

counter.

P. Bakowski

%BM_Legjsjerja nk

It has two read ports and one write port which
can each be used to access any register, plus an
additional read port and an additional write port
that give special access i#r15, the program
_counter. Y,

P. Bakowski 6

%BM_bALLeLsmﬂe r

The barrel shifter, which can shift or rotate one
operand by any number of bits.

number of bits

P. Bakowski

%BM_ALU

The ALU, which performs the arithmetic and logic
functions required by the instruction set.

operands

functions

ﬁ

P. Bakowski

%BMj;sia_ge_pjpgline

The address register and incrementer, which select
and hold addresses and generate sequential
addresses when required.

Incrementer

P. Bakowski

%BMj;sjage_pjpeline

The data registers, which hold data passing to and
from memory.

data instructions

data In register

to/from memory d[31:0]

P. Bakowski

10

%BMj;sjage_pipeline

The instruction decoder and associated control logic.

J

instructions
control path

u control signals u

data path J

P. Bakowski

11

iihLee_sjage_pjpeline : ARM 1,2,3

FETCH; the instruction is fetched from memory and
placed in the instruction pipeline.

to instruction

fetch

—

clock cycle

P. Bakowski 12

gihLeg_sjauge_pjpeline : ARM 1,2,3

DECODE; the instruction is decoded and the
datapath control signals prepared for the next cycle.

instruction register ‘

v

control path

u control signals u

fetch decode ‘

JC'

LD

tch

P. Bakowski 13

ﬁ:hLeg_sjage_pjpeline . ARM 1,2,3

EXECUTE; the instruction controls the datapath; the
register bank is read, an operand shifted the ALU
result generated and written back into a destination
register. Y

l‘ control signals l‘

data path

decode ‘ execute

fetch decode

P. Bakowski 14

iihLee_sjage_pjpeline : ARM 1,2,3

iInstruction throughput : 1 instruction per clock cycle J

instruction latency : 3 clock cycles

—

fetch

decode ‘ execute

fetch

ﬁ
clock cycle

P. Bakowski

decode

execute

execute

15

iihLee_sjage_pjpeline : ARM 1,2,3

instruction throughput : 1 instruction per clock cycle

instruction latency : 3 clock cycles |

— >

decode ‘ execute

—

fetch

fetch decode execute

decode execute

P. Bakowski 16

2,3 architecture

instruction register |1— Fae]

control path |

-

Q

fd

3, PC

=

()

L L]

b= register
— bank

d[31:0]

b Bakowsk M — multiplier, BS — barrel shifter -

mesmjgcutlon

| fetch | decode |

y

fetch

STR — store instruction needs two execution cycles:

)

e address calculation cycle and

e data transfer cycle

P. Bakowski

18

wum_cy_cje_e)ges ution

fe decode ‘ execute ‘

decode

address ‘

address calculation cycle and J

e data transfer cycle

P. Bakowski

19

i_.cycle execution

4 clock cycles
—

decode ‘ execute

decode address

transfer

decode |execute

decode

e address calculation cyclegfand

e data transfer cycle

P. Bakowski 20

i_.cycle execution

4 clock cycles
—

| decode ‘ execute

decode address ‘transfer

fetcr

—

decode |execute

fetch T decode

Attention: only one
memory transfer

e data transfer cycle per clock cycle

e address calculation cycle and

P. Bakowski 21

%msessgmerformance

The time 7, required to execute a given program
IS given by:

T=(Nye *CPD

/V,-,7 ot - umber of instructions in the program

CPI - clock cycles per instruction

f

clk - clock frequency

P. Bakowski 22

%Logess;)mgrformance

The time 7, required to execute a given program
IS given by:

I= (/v/nst *CP [)/ f;/k

/V,-,7 st - umber of instructions in the programJ

CPI - clock cycles per instruction

f

clk - clock frequency

P. Bakowski

23

%msessgmerformance

The time 7, required to execute a given program
IS given by:

I= (/v/nst *CP -[)/ f;/k

/V,-,7 st - umber of instructions in the program

CPI - clock cycles per instruction (throughput) J

f

clk - clock frequency

P. Bakowski

24

%msessngerformance

The time 7, required to execute a given program
IS given by:

I= (/v/nst *CP [)/ f;/k

/V,-,7 st - umber of instructions in the program

CPI - clock cycles per instruction

f

clk - clock frequency J

P. Bakowski 25

%msessgmerformance

Since /. is constant for a given program there are
only two ways to increase performance:

J

e increase the clock rate, /.

e reduce the average number of clock cycles per
instruction, CPL.

P. Bakowski

26

‘LCLQQK_Late_iLLcrease

" Increase the clock rate, f,. This requires the logic in

each pipeline stage to be simplified and, therefore,
the number of pipeline stages to be increased.

J

stagel ‘ stage2 stage3
m—— clock cycle — 3 stages

P. Bakowski 27

‘LCLQQK_LaJe_'LLLcrease

Increase the clock rate, £,. This requires the logic in

each pipeline stage to be simplified and, therefore,
the number of pipeline stages to be increased.

J

stagel ‘ stage2 ‘ stage3 ‘
m—— clock cycle — 3 stages

stagel ‘ stage2 ‘ stage3 ‘ stage4 ‘ stages ‘
=g clock cycle — 5 stages

P. Bakowski 28

‘Lcmsk_taje_mcrease

1 Note that the clock rate to be used depends heavily
on the implementation technology.

stagel ‘ stage2 ‘ stage3 ‘
m—— clock cycle — 3 stages

stagel‘ stage2 ‘ stage3 ‘
m—P> clock cycle — 3 stages

new implementation technology

P. Bakowski 29

,ﬁlkmemmware resources

Reduce the average number of clock cycles per
instruction, CPI. This requires the introduction of more
parallelism that means more hardware resources to be

J

used in a given clock cycle.

vt v 1

D/I M DM ‘ IM ‘
data read or data read and
instruction fetch instruction fetch

P. Bakowski

30

,L5;sjage_pjpeline organization

1 Higher performance ARM cores employ a 5-stage
pipeline and have separate instruction and data
memories. y

Breaking instruction execution down into five stages
rather than three reduces the maximum work which
must be completed in a clock cycle, and hence allows
a higher clock frequency to be used.

The separate instruction and data memories seen as
separate caches connected to a unified instruction and
data main memory allow a significant reduction in the
core's CPI.

P. Bakowski 31

-stage pipeline organization

digher performance ARM cores employ a 5-stage
pipeline and have separate instruction and data
memories.

Breaking instruction execution down into five stages
rather than three reduces the maximum work which
must be completed in a clock cycle, and hence allows
a higher clock frequency to be used.)

The separate instruction and data memories seen as
separate caches connected to a unified instruction and
data main memory allow a significant reduction in the
core's CPI.

P. Bakowski 32

-stage pipeline organization

digher performance ARM cores employ a 5-stage
pipeline and have separate instruction and data
memories.

Breaking instruction execution down into five stages
rather than three reduces the maximum work which
must be completed in a clock cycle, and hence allows
a higher clock frequency to be used.

The separate instruction and data memories seen as
separate caches connected to a unified instruction and
data main memory allow a significant reduction in the
core's CPI.

J

P. Bakowski

33

tch stage

decode ‘execute‘ buffer ‘ write ‘

FETCH - the instruction is fetched from memory and
placed in the instruction cache.

O
next PC = N e to decoder
- l—y
Q
O
M

P. Bakowski 34

code stage

decode ‘execute‘ buffer ‘ write ‘

4

DECODE - the instruction is decoded and register
operands read from the register file.

W

P. Bakowski 35

code stage

fetch ‘decode ‘execute‘ buffer ‘write ‘

4

There are three operand read ports in the register file,
so most instructions can obtain all their operands in
one cycle.

J

register
file

22

I - decode

I

P. Bakowski

36

clute stage

decode ‘execute‘ buffer ‘ write ‘

i

EXECUTE - an operand is shifted and the ALU result
generated.

register
file

P. Bakowski 37

clute stage

decode ‘execute‘ buffer ‘ write ‘

i

EXECUTE - an operand is shifted and the ALU result
generated.

register
file

P. Bakowski 38

clute stage

decode ‘execute‘ buffer ‘ write ‘

i

If the instruction is a load or store the memory
address is computed in the ALU.

register
file

P>
@

ALU

+4

P. Bakowski 39

r stage

decode ‘execute‘ buffer ‘ write ‘

BUFFER data - data memory is accessed if required.
Otherwise the ALU result is simply buffered for one clock
cycle to give the same pipeline flow for all instructions.

M

D cache

J

rotation/sign
axtension

P. Bakowski 40

ite back stage

decode ‘execute‘ buffer ‘ write ‘

I

WRITE-back; the results generated by the instruction
are written back to the register file, including any data
loaded from memory.

=P

register

file
ALU
—

rotation/sign

D cache -]

P. Bakowski 41

axtension

,lpaja_tomar_ding
In the 5-stage pipeline instruction execution is spread
across three pipeline stages, the only way to resolve
data dependencies without stalling the pipeline is to
introduce forwarding paths. y

fetch ‘decode ‘execute‘ buffer ‘write ‘J

P. Bakowski 42

a_forwarding
to register file |
fetch ‘decode ‘execute buffer wrlte H—I

\

fetch ‘decode ‘execute‘ buffer ‘write ‘

Data dependencies arise when an instruction
needs to use the result of one of its predecessors
before that result has returned to the register file.

P. Bakowski

43

a_forwarding

r Forwarding paths (by-pass) allow the intermediate
results to be passed between stages as soon as they are
available, in the 5-stage ARM pipeline each of the three
source operands can be forwarded from any of three
intermediate result registers)

to register file |

fetch ‘decode ‘execute buffer ‘write H—I

l by-pass paths |

fetch ‘decode ‘execute‘ buffer ‘write ‘

P. Bakowski 44

%C_o.r_ganjzation - compatibility

The programming behavior of the PC implemented
through r15 is based on the operational characteristics
of the 3-stage ARM pipeline.

J

Basically the 5-stage pipeline reads the instruction
operands one stage earlier and that is incompatible with
3-stage design.

P. Bakowski 45

%C_o_r_gamzation - compatibility

The programming behavior of the PC implemented
through r15 is based on the operational characteristics
of the 3-stage ARM pipeline.

Basically the 5-stage pipeline reads the instruction
operands one stage earlier and that is incompatible with
3-stage design.

J

P. Bakowski 46

%C_o_r_gamsation - solution

This problem is resolved by the incrementation of the PC
value from the fetch stage in the decode stage,
bypassing the pipeline register between the two stages.

J

PC+4 for the next instruction is equal to PC+8 for the
current instruction (4 bytes farther), so the correct r15
value is obtained without additional hardware.

P. Bakowski 47

%C_o_r_ganisation - solution

PC+4 for the next instruction is equal to PC+8 for the
current instruction (4 bytes farther), so the correct r15
value is obtained without additional hardware.

y,
next
PC+4
- register
2 | file
= Nt e to decoder
-
v
= r15 |
next PC+8

P. Bakowski 48

%BM_pLogmmming model

The Instruction Set Architecture (ISA) defines the
operations that the programmer can use to change the
state of the system incorporating the processor.

This state usually comprises the values of the data items
in the visible registers and the memory.

Each instruction performs a defined transformation from
the state before the instruction is executed to the state
after it has completed.

P. Bakowski 49

rogramming model

The Instruction Set Architecture (ISA) defines the
operations that the programmer can use to change the
state of the system incorporating the processor.

This state usually comprises the values of the data items
in the visible registers and the memory.

Each instruction performs a defined transformation from
the state before the instruction is executed to the state
after it has completed.

P. Bakowski 50

rogramming model

The Instruction Set Architecture (ISA) defines the
operations that the programmer can use to change the
state of the system incorporating the processor.

This state usually comprises the values of the data items
in the visible registers and the memory.

Each instruction performs a defined transformation from
the state before the instruction is executed to the state
after it has completed.

P. Bakowski 51

Wystem

ARM memory may be viewed as a Ilnear array of
bytes numbered from zero up to 232.1.

J

232

P. Bakowski

52

%BM_memgLy subsystem

Data items may be 8-bit bytes, 16-bit half-words or
32-bit words.

232-1 |

bytes words

P. Bakowski 53

fBM_memoLy subsystem

Words are always aligned on 4-byte boundaries (the
two least significant address bits are zero) and half-
words are aligned on even byte boundaries.

J

2324 | | byte number

1 *00\

word address

P. Bakowski 54

%BM_[DEJDDLV subsystem

Words are always aligned on 4-byte boundaries (the
two least significant address bits are zero) and half-
words are aligned on even byte boundaries.

J

224 | |

little endian organization |

—

P. Bakowski 55

%BM_IQAd;sIm‘e architecture

The processing instruction (add, subtract, and so on)
take the values from the registers and always place

P. Bakowski 56

%BM_IDAd;sjme architecture

The processing instruction (add, subtract, and so on)
take the values from the registers and always place
the results into a register. y

AN -

register
file

ALU

+4

P. Bakowski 57

LIABM load-store architecture

The only instructions which apply to memory state are ones
which copy memory values into register (load instructions)
or copy register values into memory (store instructions).

J

register r—— D -cache
file

-_u

P. Bakowski 58

LIABM load-store architecture

The only instructions which apply to memory state are ones
which copy memory values into register (load instructions)
or copy register values into memory (store instructions).

J

register r—— D -cache
file

ﬁ

P. Bakowski 59

%BM_insjmc_tions

In general the ARM instructions fall into one of the
following three categories:
e data processing instructions

e data transfer instructions
e control flow instructions

P. Bakowski 60

%BMj_nsimcjions

In general the ARM instructions fall into one of the
following three categories:
e data processing instructions |

e data transfer instructions
e control flow instructions

P. Bakowski 61

%BMj_nsimcjions

In general the ARM instructions fall into one of the
following three categories:
e data processing instructions

e data transfer instructions |
e control flow instructions

P. Bakowski 62

%BM_inslr_ucjions

In general the ARM instructions fall into one of the
following three categories:
e data processing instructions

e data transfer instructions
e control flow instructions |

P. Bakowski 63

Wmmcessing

Data processing instructions:

these use and change only register values;

P. Bakowski

64

a_processing

For example, an instruction can add two registers and
place the result in a register.

register
file

ALUbus

+4

P. Bakowski 65

,}ammma_t;ansfer

Data transfer instructions copy memory values into
registers (load instructions) or copy register values
into memory (store instructions);

J

An additional form, useful only in systems code,
exchanges a memory value with a register value.

P. Bakowski

66

,}ammma_t;ansfer

Data transfer instructions copy memory values into
registers (load instructions) or copy register values
into memory (store instructions);

An additional form, useful only in systems code,
exchanges a memory value with a register value.

P. Bakowski 67

fBM_dﬁla_tLansfer

Data transfer instructions copy memory values into
registers (load instructions) or copy register values
into memory (store instructions);

An additional form, useful only in systems code,
exchanges a memory value with a register value.

e.g. test and set instruction

N—

P. Bakowski

68

%BM_\:meoLﬂow

Control flow instructions cause execution to switch to

a different address, either permanently (branch
iInstructions) or saving a return address to resume the
original sequence (branch and link instructions) or

trapping into system code (supervisor calls).)

P. Bakowski

69

%BM_\:meoLﬂow

Control flow instructions cause execution to switch to

a different address, either permanently (branch
instructions) or saving a return address to resume the
original sequence (branch and link instructions) or

trapping into system code (supervisor calls).)

link address

P. Bakowski

/70

%BM_\:meoLflow

Control flow instructions cause execution to switch to

a different address, either permanently (branch
instructions) or saving a return address to resume the
original sequence (branch and link instructions) or

trapping into system code (supervisor calls). Y

link address

system code

P. Bakowski

/1

%BM_supgmisor mode

The ARM processor supports a protected supervisor
mode. The protection mechanism ensures that user
code cannot gain supervisor privileges without
appropriate checks being carried out to ensure that the
_code is not attempting illegal operations.)

)

illegal operation ?

user code
P. Bakowski 72

upervisor mode

The upshot of this for the user-level programmer is that
system-level functions can only be accessed through
specified supervisor call.

J

system/supervisor call

system code

user code

P. Bakowski 73

%BM_V_O_pLQgramming

The ARM handles I/0 (input/output) peripherals (such
as disk controllers, network interfaces, and so on) as
memory-mapped devices with interrupt support. y

®

memory-mapped devices

P. Bakowski 74

%BM_V_O_pLogramming

The internal registers in these devices appear as
addressable locations within the ARM's memory map
and may be read and written using the same (load-

store) instructions as any other memory locations. y
‘ 1 L‘ sore
y
% N B
% . load
s 2 0a
% L
% L

memory locations |

P. Bakowski 75

%BM_V_O_imgﬂuptions

Peripherals may attract the processor's attention by
making an interrupt request using either the normal
interrupt (IRQ) or the fast interrupt (FIQ) input.

J

to CPU - FIQ to CPU -
IRQ

Q/IV:;/"'

P. Bakowski 76

%BM_V_O_EMBLLuptions

Both interrupt inputs are level-sensitive and maskable.
Normally most interrupt sources share the IRQ input,
with just one or two time-critical sources connected to

the higher-priority FIQ input.

J

P ‘
+

P. Bakowski

77

%BM_V_OJnlerruptions

Some systems may include direct memory access
(DMA) hardware external to the processor to handle
high-bandwidth traffic.

J

system bus

I lﬁl . wan==71" DMA traffic

P. Bakowski 78

%BM_eLcepj ions

The ARM architecture supports a range of :

interrupts
traps
supervisor calls

all grouped under the general heading of exceptions.

P. Bakowski

79

%BM_eLcepj ions

The ARM architecture supports a range of :

interrupts J

traps
supervisor calls

all grouped under the general heading of exceptions.

P. Bakowski

80

%BM_eLcepj ions

The ARM architecture supports a range of :

interrupts

traps |

supervisor calls

all grouped under the general heading of exceptions.

P. Bakowski

81

%BM_eLcepj ions

The ARM architecture supports a range of :

interrupts
traps

supervisor calls |

all grouped under the general heading of exceptions.

P. Bakowski

82

%BM_eLcepj ions

The ARM architecture supports a range of :

interrupts
traps
supervisor calls

all grouped under the general heading of exceptions.

P. Bakowski

83

%BM_eLcepjions

The general way of exception handling is the same in all J
cases:

e the current state is saved by copying the PC into
rl4_exc and the CPSR into SPSR_exc (where exc stands
for the exception type);

e the processor operating mode is changed to the
appropriate exception mode;

e the PC is forced to a value between 00, and 1C,,, the
particular value depending on the type of exception.

P. Bakowski 84

fﬂM_e)gcepji ons

The general way of exception handling is the same in all
cases:

e the current state is saved by copying the PC into
rl4_exc and the CPSR into SPSR_exc (where exc stands
for the exception type); y

e the processor operating mode is changed to the
appropriate exception mode;

e the PC is forced to a value between 00, and 1C,,, the
particular value depending on the type of exception.

P. Bakowski 85

fﬂM_e)gcepji ons

The general way of exception handling is the same in all
cases:

e the current state is saved by copying the PC into
rl4_exc and the CPSR into SPSR_exc (where exc stands
for the exception type);

e the processor operating mode is changed to the
appropriate exception mode;

e the PC is forced to a value between 00, and 1C,,, the
particular value depending on the type of exception.

P. Bakowski 86

%BM_eLcepjions

The general way of exception handling is the same in all
cases:

e the current state is saved by copying the PC into
rl4_exc and the CPSR into SPSR_exc (where exc stands
for the exception type);

e the processor operating mode is changed to the
appropriate exception mode;

e the PC is forced to a value between 00,, and 1C,,, the
particular value depending on the type of exception.

P. Bakowski 87

truction execution

instruction register |1— Fae]

control path |

-

Q

fd

3, PC

=

()

L L]

b= register
— bank

d[31:0]

b Bakowsk M — multiplier, BS — barrel shifter o8

a[31:0]

a_processing instruction

register — register operations J

I3
3, PC
=
v
-~ register
-
=) bank Abus

P. Bakowski 89

a[31:0]

a_processing instruction

register — immediate operations J

ir register

-

Q

fd

3, PC

=

Q

L L]

LE’ register
— bank

P. Bakowski 90

a[31:0]

tore instruction

compute address operation J

ir register

-

Q

fd

3, PC

=

Q

L L]

LE’ register
— bank

new address |

P. Bakowski 91

tore instruction

store data — auto-index J

ir register

=)
-
) 9
© 3 PC
=
Q
;_]
LE’ register
— bank

auto-index |

P. Bakowski 92

#mncilnsimﬂon

compute branch address J

ir register

=)
-
) 9
© S PC
=
Q
;_ [
LE’ register
— bank

branch address |

P. Bakowski 93

#mncilnsimﬂon

a[31:0]

store return address J

ir register

| .

)

fd

3, PC

E [

g register
= bank

R14

return address |

P. Bakowski 94

e

m ARM register bank

m ARM barrel shifter and ALU
m ARM 3-stage and 5-stage pipelines
m ARM programming model

m ARM instructions

P. Bakowski

95

=

m ARM register bank
m ARM barrel shifter and ALU

m ARM 3-stage and 5-stage pipelines
m ARM programming model

m ARM instructions

P. Bakowski

96

=

m ARM register bank
m ARM barrel shifter and ALU
m ARM 3-stage and 5-stage pipelines

m ARM programming model

m ARM instructions

P. Bakowski

97

-

m ARM register bank
m ARM barrel shifter and ALU
m ARM 3-stage and 5-stage pipelines

m ARM programming model

m ARM instructions

P. Bakowski

98

-

m ARM register bank

m ARM barrel shifter and ALU

m ARM 3-stage and 5-stage pipelines
m ARM programming model

m ARM instructions J

P. Bakowski

99

