ARM processor
implementation

Bakowski

bako@ieee.org

locking scheme

ARM architecture design is based around 2-phaseJ
non-overlapping clocks.

P. Bakowski

locking scheme

ARM architecture design is based around 2-phase
non-overlapping clocks.

This clocking scheme allows the use of level J
sensitive transparent latches.

P. Bakowski

locking scheme

ARM architecture design is based around 2-phase
non-overlapping clocks.

This clocking scheme allows the use of level
sensitive transparent latches.

Data move alternatively through latches that are
open during phase 1 and latches that are open
during phase 2. y
This overlapping property ensures that there are
no race conditions in the circuit.

P. Bakowski

locking scheme

ARM architecture design is based around 2-phase
non-overlapping clocks.

This clocking scheme allows the use of level
sensitive transparent latches.

Data move alternatively through latches that are
open during phase 1 and latches that are open
during phase 2.

This overlapping property ensures that there are
no race conditions in the circuit. J

P. Bakowski

%BM_\:JQ_cjging_scheme

1 clock cycle

M

, \ phase 1 , \ ,

P. Bakowski

%BM_\:JQ_cjﬂng_scheme

1 clock cycle

M

, \ phase 1 , \ ,

phase 2

P. Bakowski

phase 1

phase 2

read bus valid

register read time

P. Bakowski

phase 1

phase 2

read bus valid

shift out valid

shift time

P. Bakowski

a_path timing
ALU operands latched

read bus Walid

phase 1

phase 2

shift time

P. Bakowski

10

read bus valid

phase 1

phase 2

shift out valid

ALU time !

/

X

P. Bakowski

11

a_path timing

ALU operands latched phase 1

phase 2

read bus valic

pre-charge invalidates
shift out vajd buses

SN

P. Bakowski 12

phase 1

phase 2

register write
time

X

P. Bakowski

ALU out

13

i_ABM_dﬁla_path timing

The minimum data-path cycle is the sum of: |

the register read time
the shifter delay
the ALU delay
t
t

ne register write set-up time

ne phase 2 to phase 1 non-overlap time

P. Bakowski

14

i_ABM_dﬁla_path timing

The minimum data-path cycle is the sum of:

the register read time

the shifter delay
the ALU delay
t
t

ne register write set-up time

ne phase 2 to phase 1 non-overlap time

P. Bakowski

15

i_ABM_dﬁla_path timing

The minimum data-path cycle is the sum of:
the register read time

he shifter delay

ne register write set-up time

t
the ALU delay
t
t

he phase 2 to phase 1 non-overlap time

P. Bakowski

16

i_ABM_dﬁla_path timing

The minimum data-path cycle is the sum of:
the register read time

he shifter delay

ne register write set-up time

t
the ALU delay
t
t

he phase 2 to phase 1 non-overlap time

P. Bakowski

17

i_ABM_dﬁla_path timing

The minimum data-path cycle is the sum of:
the register read time

he shifter delay

ne register write set-up time

t
the ALU delay
t
t

ne phase 2 to phase 1 non-overlap time

P. Bakowski

18

iABM_daJa_path timing

The minimum data-path cycle is the sum of:
the register read time
the shifter delay
the ALU delay
the register write set-up time

the phase 2 to phase 1 non-overlap time

)

P. Bakowski

19

L] ARM data path timing

- Timing in a 3-stage pipeline.

phase 1

- \ / \ phase 2

read bus valid

.J F e

\—, ALU out

ALU time A X

5. Bakowski shift out valid

20

iABMJ_-adder design
ARM1 — the original ripple-carry adder:

P. Bakowski

iABMJ_-adder design

Using CMOS and-or-invert gate for the A
carry logic and alternating and-or logic so
that event bits use the circuit shown and
odd bits use the dual circuit with inverted
inputs and outputs and and-or gates
swapped around, the worst-case carry

path is 32 gates long. /

P. Bakowski

22

#ﬁMLaddgr design

- To reduce the propagation path length ARM2
used a 4-bit carry look-ahead logic.

A[3:0] G >
— Cout[3]
P .
B[3:0] sum[3:0]
—

P. Bakowski 23

‘ABM_Z;addar_design

- Exercise: Draw the logic scheme of the circuit fi
Generate and Propagate signals

P. Bakowski

24

%BMLALU_design

control lines

22222

—)
bit-slice of ALU —)
—

o(1) bus W

carry in/out

A(i) bus

P. Bakowski 25

R

000100

A(i) bus

B(i) bus

carry in/out

P. Bakowski

ALU(i) bus

26

R

010110

A(i) bus

B(i) bus

carry in/out

P. Bakowski

ALU(i) bus

27

%BM_G;adder design

The further reduction of the propagation time is

provided by a carry-select adder implemented with
ARM 6. P

This form of adder computes the sums of various
fields of the word for a carry-in both zero and one.

The final result is selected by using the correct carry-
in value to control a multiplexer.

P. Bakowski 28

fBM_G;adder design

The further reduction of the propagation time is

provided by a carry-select adder implemented with
ARM 6.

This form of adder computes the sums of various
fields of the word for a carry-in both zero and one.

The final result is selected by using the correct carry-
in value to control a multiplexer.

P. Bakowski 29

fBM_G;adder design

The further reduction of the propagation time is

provided by a carry-select adder implemented with
ARM 6.

This form of adder computes the sums of various
fields of the word for a carry-in both zero and one.

The final result is selected by using the correct carry-
in value to control a multiplexer.

P. Bakowski 30

%BM_B;adder_design

a,b[15:12] a,b[11:8] a,b[7:4] a,b[3:0]
|1 |1 |1 |1

/ 7/ / 7/ / 7/ / 7/

+,+1 T +,+1 T
the logic
for ‘ ‘
s[31:16]

b * s[7:4] s[3:0]

s[15:8]
P. Bakowski

%BM_B;adder_design

a,b[15:12] a,b[11:8] a,b[7:4] a,b[3:0]
|1 |1 |1 |1

/ 7/ / 7/ / 7/ / 7/

+,+1 T +,+1 T
the logic
for ‘ ‘
s[31:16]

b * s[7:4] s[3:0]

s[15:8]
P. Bakowski

%BM_B_A;U_demgn

A Iatch

/
B latch

/

P. Bakowski

/

33

%BM_G_A.ILU design

/
A Iatch B latch ‘
| |
/ /
invert A XOR gates XOR gates

‘ Invert B

. |

/

P. Bakowski

/

|
/

34

%BM_G_ALU_QQSLQ n
v

A Iatch B latch

r |

Cin

P. Bakowski 35

%BM_B_ALU_demgn ,

A Iatch B latch ‘
invert A~ XOR gates ‘ XOR gates ‘ invert B

| 5 |

Cin

logic/ - ; \
arithmetic * N C VALU -
ags
zero detect |-> Z
- J

P. Bakowski 36

fﬂM_ba.tr_ej_shifter

The shifter delay is critical because it is connected
in series with ALU unit.

Therefore, it is implemented as a 32*32 cross-bar
switch matrix where each input is steered directly
to the appropriate output.

If a pre-charged logic is used, each switch may be
implemented as one transistor.

P. Bakowski 37

fBMJmLeLshifter

The shifter delay is critical because it is connected
in series with ALU unit.

Therefore, it is implemented as a 32*32 cross-bar
switch matrix where each input is steered directly
to the appropriate output.

_/

If a pre-charged logic is used, each switch may be
implemented as one transistor.

P. Bakowski 38

fﬂM_ba.tr_ej_shifter

The shifter delay is critical because it is connected
in series with ALU unit.

Therefore, it is implemented as a 32*32 cross-bar
switch matrix where each input is steered directly
to the appropriate output.

If a pre-charged logic is used, each switch may be
implemented as a single transistor.

P. Bakowski 39

in[3]

in[2]

in[1]

in[0]

arrel shifter
right3 right2 rightl no shift

_274
//
.

left2

1 i ' i left3
; 1‘/1' /"

ou:c[O] out[1] out[2] ou:c[3]

leftl

SN
RN

P. Bakowski 40

arrel shifter
right3 right2 rightl no shift]

%=
iN[2] s Y. - left]
> *
. left2
iN[1] == < ‘rr
N[0k s =] ¢ | / left3
: S A A
v \/ v 1V
out[0] out[l] out[2] out[3]

P. Bakowski

arrel shifter

right3 right2] rightl no shift

Z9

K |
out[0] out[l] out[2] out[3]
P. Bakowski 42

arrel shifter
right3 right2 rightl no shift

in[3] —|—|' Z/hl_' I

. [_' left1

in[2] ==

in[1] » left2 |

in[0] * 1 1 / left3
A A

out[0] out[l] out[2] out[3]
P. Bakowski 43

%ﬂM_ba.tr_ej_shifter

In the ARM the barrel shifter operates in negative

logic where a ‘1’ is represented as a potential near
_ground and a 0’ by a potential near supply.)

Pre-charging sets all the outputs to a logic ‘0’ (supply

potential), so those outputs that are not connected to

any input during a particular switching operation

remain at ‘0’ giving the zero filling required by the

shift semantics.

>

pre-charging to ‘0’
P. Bakowski 44

7

arrel shifter

In the ARM the barrel shifter operates in negative
logic where a ‘1’ is represented as a potential near
ground and a ‘0’ by a potential near supply.
Pre-charging sets all the outputs to a logic ‘0 (supply
potential), so those outputs that are not connected to
any input during a particular switching operation
remain at ‘0’ giving the zero filling required by the
_Shift semantics.

)

J

>

pre-chargiﬁg to 0’

7

P. Bakowski

45

#BM_ba.tLeJ_shifter . rotations

For rotate right function, the right shift diagonal is J

enabled together with the complementary shift diagonal.

For example, on the 4-bit matrix rotate right one bit is
implemented using the ‘rightl’ and the ‘left3’ (3=4-1)
diagonals.

P. Bakowski 46

arrel shifter - rotations

r rotate right function, the right shift diagonal is
enabled together with the complementary shift diagonal.

For example, on the 4-bit matrix rotate right one bit is
implemented using the ‘rightl” and the ‘left3’ (3=4-1)
diagonals.)

P. Bakowski 47

,}amunummier design

ARM1 no hardware for multiplication J

ARM2 low-cost multiplication hardware: 32-bit
result multiply and multiply-accumulate instructions

ARMG6 high performance multiplication hardware:

64-bit result multiply and multiply-accumulate
instructions

P. Bakowski 48

fBM_muﬂiiner design

ARM1 no hardware for multiplication
ARM2 low-cost multiplication hardware: 32-bit J

result multiply and multiply-accumulate instructions

ARMG6 high performance multiplication hardware:

64-bit result multiply and multiply-accumulate
instructions

P. Bakowski

49

fﬂM_muﬂiplier design

ARM1 no hardware for multiplication

ARM2 low-cost multiplication hardware: 32-bit
result multiply and multiply-accumulate instructions

ARMG6 high performance multiplication hardware:

64-bit result multiply and multiply-accumulate
Instructions

P. Bakowski

50

W - cost multiplier

Low-cost multiplier employs the barrel shifter and
ALU to generate a 2-bit product in each clock cycle.

Early-termination is used to stop the iterations when
there are no more ones in the multiply register.

The multiplier logic implements a modified Booth’s
algorithm that allows to generate 2-bit sub-products
In one step.

The additional hardware is limited to a dedicated two-
bits-per-cycle shift register and a few gates for the
control logic.

P. Bakowski 51

W - cost multiplier

Low-cost multiplier employs the barrel shifter and
ALU to generate a 2-bit product in each clock cycle.

Early-termination is used to stop the iterations when
there are no more ones in the multiply register.

The multiplier logic implements a modified Booth’s
algorithm that allows to generate 2-bit sub-products
In one step.

The additional hardware is limited to a dedicated two-
bits-per-cycle shift register and a few gates for the
control logic.

P. Bakowski 52

W - cost multiplier

Low-cost multiplier employs the barrel shifter and
ALU to generate a 2-bit product in each clock cycle.

Early-termination is used to stop the iterations when
there are no more ones in the multiply register.

The multiplier logic implements a modified Booth's
algorithm that allows to generate 2-bit sub-products
in one step.

Y,

The additional hardware is limited to a dedicated two-
bits-per-cycle shift register and a few gates for the
control logic.

P. Bakowski 53

W - cost multiplier

Low-cost multiplier employs the barrel shifter and
ALU to generate a 2-bit product in each clock cycle.

Early-termination is used to stop the iterations when
there are no more ones in the multiply register.

The multiplier logic implements a modified Booth’s
algorithm that allows to generate 2-bit sub-products
In one step.

The additional hardware is limited to a dedicated two-
bits-per-cycle shift register and a few gates for the
control logic.

P. Bakowski 54

fBM_Iva_cost multiplier

Carry-in multiplier |logic shift |ALU Carry-out
0 *0 2N A+0 0

*1 2N A+B 0

*2 2N+1 A-B 1

*3 2N A-B 1
1 *0 2N A+B 0

*1 2N+1 A+B 0

*2 2N A-B 1

*3 2N A+0 1

P. Bakowski

55

fBM_Iva_cost multiplier

Carry-in multiplier |logic shift |ALU Carry-out
0 *0 2N A+0 0

*1 2N A+B 0

*2 2N+1 A-B 1

*3 2N A-B 1
1 *0 2N A+B 0

*1 2N+1 A+B 0

*2 2N A-B 1

*3 2N A+0 1

P. Bakowski

56

fBM_Iva_cost multiplier

Carry-in multiplier |logic shift |ALU Carry-out
0 *0 2N A+0 0

*1 2N A+B 0

*2 2N+1 A-B 1

*3 2N A-B 1
1 *0 2N A+B 0

*1 2N+1 A+B 0

*2 2N A-B 1

*3 2N A+0 1

P. Bakowski

57

fBM_Iva_cost multiplier

Carry-in multiplier |logic shift |ALU Carry-out
0 *0 2N A+0 0

*1 2N A+B 0

*2 2N+1 A-B 1

*3 2N A-B 1
1 *0 2N A+B 0

*1 2N+1 A+B 0

*2 2N A-B 1

*3 2N A+0 1

P. Bakowski

58

%BM_hjgh:speed multiplier

High performance multiplication employs redundant
binary representation to avoid the carry-propagate
delays associated with adding partial products

together. y

Intermediate results are held as partial sums and
partial carries. These results are added in the main
ALU at the end of multiplication.

During the multiplication the partial sums and carries
are combined in carry save adders where carries may
propagate only one bit per addition stage.

P. Bakowski 59

igh-speed multiplier

High performance multiplication employs redundant
binary representation to avoid the carry-propagate
delays associated with adding partial products
together.

Intermediate results are held as partial sums and
partial carries. These results are added in the main

ALU at t

he end of multiplication. y

During t
are com

he multiplication the partial sums and carries

bined in carry save adders where carries may

propagate only one bit per addition stage.

P. Bakowski 60

igh-speed multiplier

High performance multiplication employs redundant
binary representation to avoid the carry-propagate
delays associated with adding partial products
together.

Intermediate results are held as partial sums and
partial carries. These results are added in the main
ALU at the end of multiplication.

During the multiplication the partial sums and carries
are combined in carry save adders where carries may
propagate only one bit per addition stage.

Y,

P. Bakowski 61

iCALLy;sale_adders

The simplest carry-save adder has 3 inputs and 2
outputs that accept a partial sum, a partial carry and
a partial product, all of the same binary weight.

J

The output produce a new partial sum and a new
partial carry where the carry has twice the weight of
the sum.

The internal logic of each simple adder is identical to
a conventional full adder, but the interconnection
structure is different.

P. Bakowski 62

iCALLy;sale_ adders

The simplest carry-save adder has 3 inputs and 2
outputs that accept a partial sum, a partial carry and
a partial product, all of the same binary weight.

The output produce a new partial sum and a new
partial carry where the carry has twice the weight of
the sum.

J

The internal logic of each simple adder is identical to
a conventional full adder, but the interconnection
structure is different.

P. Bakowski 63

iCALLy;sale_ adders

The simp
outputs t

est carry-save adder has 3 inputs and 2
nat accept a partial sum, a partial carry and

a partial

product, all of the same binary weight.

The output produce a new partial sum and a new

partial ca
the sum.

The inter

a conventional full adder, but the interconnection

structure

rry where the carry has twice the weight of

nal logic of each simple adder is identical to

Is different.

P. Bakowski 64

iCa.tr_y;pLopagate adder

A B Cin A B Cin A B Cin A B Cin

*Vrldiirllﬁrldiir

Cout Sum Cout Sum Cout Sum Cout Sum

The carry-propagate adder takes two conventional
(irredundant) binary numbers as inputs and produces
a binary sum.)

P. Bakowski 65

Cin

A T A 5 5v

,—‘uﬂﬁ—wet

Cout UM cout UM cout SUM oy UM

The carry-save adder takes one binary and one
redundant (partial sum and partial carry) input and
produces a sum in a redundant binary representation.

P. Bakowski 66

iCALLy;sale_adder

During the iterative multiplication stages, the sum is
fed back and combined with one partial product in
each iteration.

When all partial products have been added, the
redundant representation is converted into a
conventional binary number by adding the partial sum
and partial carry in the carry propagate adder.

P. Bakowski 67

iCALLy;sale_adder

During the iterative multiplication stages, the sum is
fed back and combined with one partial product in
each iteration.

When all partial products have been added, the
redundant representation is converted into a
conventional binary number by adding the partial sum
and partial carry in the carry propagate adder.)

P. Bakowski 68

i:ljgh_pgrjm:mance multiplier

High speed multipliers have several layers of carry-
save adders, each handling one partial product.

In some ARM cores the carry-save array has four
layers of adders, each handling two multiplier bits (see
Booth algorithm), so the array can multiply eight bits
per clock cycle.

The array is cycled up to four times, using early
termination, to complete multiplication in less than
four cycles when the multiplier has sufficient zeros in
the top bits.

P. Bakowski 69

i:ljgh_perjm:mance multiplier

High speed multipliers have several layers of carry-
save adders, each handling one partial product.

In some ARM cores the carry-save array has four
layers of adders, each handling two multiplier bits (see
Booth algorithm), so the array can multiply eight bits
per clock cycle.)

The array is cycled up to four times, using early
termination, to complete multiplication in less than
four cycles when the multiplier has sufficient zeros in
the top bits.

P. Bakowski 70

i:ljgh_perjm:mance multiplier

High speed multipliers have several layers of carry-
save adders, each handling one partial product.

In some ARM cores the carry-save array has four
layers of adders, each handling two multiplier bits (see
Booth algorithm), so the array can multiply eight bits
per clock cycle.

The array is cycled up to four times, using early
termination, to complete multiplication in less than
four cycles when the multiplier has sufficient number
of zeros in the top bits. P

P. Bakowski 71

rotate sum
and carry 8
bits/cycle

J

carry-save adders

partial sum
. v

partial carry

\arry-propagate addM

P. Bakowski

72

%BM_LegLsier bank

ARM has 31 general-purpose 32-bit registers containing
almost 1 Kbytes of data.

32-bit register

31 general-purpose
registers

P. Bakowski 73

ZIABM register cell

I The transistor circuit of the register cell used in ARM cores
up to the ARM6 is based on an asymmetric cross-coupled
pair of CMOS inverters which is overdriven by a strong

signal from the ALU bus when the register contents are
changed.

write read A read B
PR I S R
A bus = [—
B bus ===

SN AN
P. Bakowski_'_i-i-»-ij-'_i_'_im

%BM_LegisjeLcell
‘he transistor circuit of the register cell used in ARM cores

up to the ARM6 is based on an asymmetric cross-coupled
pair of CMOS inverters which is overdriven by a strong
signal from the ALU bus when the register contents are

changed.

write read A read B
ALU bus e
A bus [—
B bus

P. Bakowski _J - - 75

gister cell

The feedback inverter is made weak in order to minimize
the cell’s resistance to the new value.

write read A read B
ALU bus ==

A bus ==
B bus ==

C — S

P. Bakowski 76

%BM_Legisjer_cell

The A and B buses are pre-charged to Vdd during phase 2
of the clock cycle, so the register cell needs only discharge
the read buses, which it does through n-type pass
transistors when the read lines are enabled. Y

write read A read B
P . S—
A bus ==

B bus ===

il
1

-

| o
—i-i-»-i—

P. Bakow-ski - 77

1
[

%BM_Le_gisjer_cell

The A and B buses are pre-charged to Vdd during phase 2
of the clock cycle, so the register cell needs only discharge
the read buses, which it does through n-type pass
transistors when the read lines are enabled. Y

write read A read B
PP . S
A bys |Tem= f— \

B bus ==

| .
—i-i-»-i—‘

P. Bakow-ski - 78

%BM_LegLsier cell

This register cell works well with a 5 V supply. |
In new designs ARM uses lower supply voltages where
writing a ‘1’ through the n-type pass transistor would

be impossible.

Instead it uses a full CMOS transmission gate requiring
complementary write enable control lines.

N |

r

N-MOS P MOS
P. Bakowski 79

gister cell

This register cell works well with a 5 V supply.

In new designs ARM uses lower supply voltages where
writing a ‘1’ through the n-type pass transistor would J
be impossible.

Instead it uses a full CMOS transmission gate requiring
complementary write enable control lines.

N |

r

N-MOS P MOS
P. Bakowski 80

gister cell

This register cell works well with a 5 V supply.

In new designs ARM uses lower supply voltages where
writing a ‘1’ through the n-type pass transistor would
be impossible.

Instead it uses a full CMOS transmission gate requiring
complementary write enable control lines.

N |

|
!-J_F‘J
N-MQOS PjMOS

P. Bakowski 81

fﬂM_Legisjer bank

The register cells are arranged in columns to form a
32-bit register, and the columns are packed
together to form the complete register bank.

The decoders for the read and write enable lines
are packed above the columns; the enable lines run
vertically and the data buses horizontally across the
array of register cells.

P. Bakowski 82

fﬂM_Legisjer bank

The register cells are arranged in columns to form a
32-bit register, and the columns are packed
together to form the complete register bank.

The decoders for the read and write enable lines
are packed above the columns; the enable lines run
vertically and the data buses horizontally across the
array of register cells.

P. Bakowski

83

X
=
®

e

g

2
o

vVdd

| ALU bus

Vss

gister cells |

re

A bus

| B bus

84

P. Bakowski

%BM_Legisjema nk

|1 Abs read decodets. ||]

|17 "B bUs read decoderts |]
vdd [] Dwrite decodefis] = T
Vss I |1 1_1 ALU bus
11 R P
register cells | A bus
- -
1 |_1_1_1 Bbus
P. Bakowski 85

%BM_Legisjemank

|1 Abs read decodets. ||]
|1 Bbus read decodets ||]

vdd [] Dwrite decodefis] = T
Vss
R O |1 1_1 ALU bus
11]

PC bus I register cells | A bus
~— _— !
= R A |_1__1__1 Bbus

INC bus 4

P. Bakowski 86

%BM_Legisier bank

The ARM program counter register is physically part of
the register bank, but it has two write and three read
ports whereas the other registers have one write and
two read ports.

J

\
__ &= ALUbus

PC bus _|_|

\'_'_._—!—/ A bus

INC bus J

P. Bakowski

87

%BM_Legisier bank

The ARM program counter register is physically part of
the register bank, but it has two write and three read
ports whereas the other registers have one write and
two read ports.

J

]
&= ALU bus
]

PC bps

. | |

I P A bus
~ Bbus /

"
INC bus

P. Bakowski 88

a_path layout

The ARM datapath is laid out to a constant pitch per
bit.

Each function is laid out to this pitch.
The buses pass over the functional blocks.

The order of the blocks is chosen to minimize the
number of additional buses passing over more
complex functions.

P. Bakowski

89

a_path layout

The ARM datapath is laid out to a constant pitch per
bit.

Each function is laid out to this pitch. |

The buses pass over the functional blocks.

The order of the blocks is chosen to minimize the
number of additional buses passing over more
complex functions.

P. Bakowski 90

a_path layout

The ARM datapath is laid out to a constant pitch per
bit.

Each function is laid out to this pitch.

The buses pass over the functional blocks.

The order of the blocks is chosen to minimize the
number of additional buses passing over more
complex functions.

P. Bakowski

91

a_path layout

The ARM datapath is laid out to a constant pitch per
bit.

Each function is laid out to this pitch.
The buses pass over the functional blocks.

The order of the blocks is chosen to minimize the
number of additional buses passing over more
complex functions.

P. Bakowski

92

includes PC |y

a_path layout & buses

address register ‘

register bank

one-bit pitch/

P. Bakowski

93

%BM_daJa_pajLLayout & buses

address register ‘

register bank |

. . ' muitiplier

Spllfrer

P. Bakowski

data

communication
buffers

P. Bakowski

a_path layout & buses

address register ‘

[ACrémenter

multiplier

ALU
SHIErR
data In

INStruction; pIpe

data out
. .

95

a_path layout & buses

address register ‘

[ACrémenter

multiplier

ALU

SHlfter
data In

INStruction; pIpe

data out
. .

P. Bakowski

a_path layout & buses

address register ‘

register bank
output buses

INStruction; pIpe

— data out ‘

P. Bakowski - 97

a_path layout & buses

address register ‘

data/instruction
input bus

INStruction; pIpe

— data out ‘

Din| |
P. Bakowski 98

data write bus |

N\

g
W
datalin
INStruction; pIpe
_ - data out ‘
Din |

P. Bakowski

99

a_path layout & buses

W address register |

shift out

P
I

shift out bus |

— data out ‘

Din | |
P. Bakowski 100

a_pathlayout & buses

Inc

—”

~ r-
PC ml JJrJI)JJer

address —
incrementation AlURESF

data In

Instruction pipe

data out ‘

P. Bakowski 101

a_path layout & buses

' address register

-

=

multiplier
ALU

data/address
incrementation

data In

INStruction; pIpe

data out ‘

P. Bakowski 102

data In

INStruction; pIpe

data out ‘

P. Bakowski 103

a_path layout & buses
C

In

L = address register ‘

o

I~

|

s

shift out
— INStruction; pIpe
_ - data out
Din | ‘

P. Bakowski - 104

i_ABM_\:.omr_ol path

The control path in simpler ARM cores has
three structural components:

an instruction decoder PLA

C
wit

istributed secondary control associated
N main functional units

C

ecentralized control units for specific

Instructions

P. Bakowski

105

iABM_\:QmLoI path

The control path in simpler ARM cores has
three structural components:

an instruction decoder PLA

wit

C

distributed secondary control associated

h main functional units

ecentralized control units for specific

Instructions

P. Bakowski

106

i_ABM_\:.omr_ol path

The control path in simpler ARM cores has
three structural components:

an instruction decoder PLA

wit

distributed secondary control associated

h main functional units

C

ecentralized control units for specific

Instructions

P. Bakowski

107

i_ABM_\:.omr_ol path

The control path in simpler ARM cores has
three structural components:

an instruction decoder PLA

wit

C

distributed secondary control associated

h main functional units

ecentralized control units for specific

Instructions

P. Bakowski

108

*ABMJ_nﬂmcjion decoder PLA

Instruction

cycle
counter

Class of instruction: ALU, load/store, branch,
CO-processor, ..

P. Bakowski 109

econdary control

instruction |

cycle
counter

address
control

register\r ALU \r shifter
control control control

110

centralized control

CO-Processor \

I multiply |

control
cycle | :
counter

load/store

control

instruction |

/

—

address reglster ALU \r shifter
control control control control

P. Bakowski

iABM_haLd_\:_ores versus soft cores

There are two kinds of supports for the implementation
of ARM cores:

a hard macrocell that is delivered as physical layout
ready to be incorporated into the final design

a soft macrocell that is delivered as a synthesizable
design expressed in a hardware description language
such as Verilog HDL or VHDL

P. Bakowski 112

iABM_haLd_\:_ores versus soft cores

There are two kinds of supports for the implementation
of ARM cores:

a hard macrocell that is delivered as physical layout
ready to be incorporated into the final design

a soft macrocell that is delivered as a synthesizable
design expressed in a hardware description language
such as Verilog HDL or VHDL

P. Bakowski 113

iABM_haLd_\:gres versus soft cores

There are two kinds of supports for the implementation
of ARM cores:

a hard macrocell that is delivered as physical layout
ready to be incorporated into the final design

a soft macrocell that is delivered as a synthesizable
design expressed in a hardware description language
such as Verilog HDL or VHDL

P. Bakowski 114

P. Bakowski

ARM clocking scheme |

ARM data path timing
ARM adder design
ARM ALU design

ARM barrel shifter
ARM multipliers

ARM register bank
ARM data path layout
ARM control path

115

P. Bakowski

ARM clocking scheme
ARM data path timing |

ARM adder design
ARM ALU design

ARM barrel shifter
ARM multipliers

ARM register bank
ARM data path layout
ARM control path

116

P. Bakowski

ARM clocking scheme
ARM data path timing
ARM adder design |

ARM ALU design

ARM barrel shifter
ARM multipliers

ARM register bank
ARM data path layout
ARM control path

117

P. Bakowski

ARM clocking scheme
ARM data path timing
ARM adder design

ARM ALU design J

ARM barrel shifter
ARM multipliers

ARM register bank
ARM data path layout
ARM control path

118

P. Bakowski

ARM clocking scheme
ARM data path timing
ARM adder design

ARM ALU design

ARM barrel shifter |

ARM multipliers

ARM register bank
ARM data path layout
ARM control path

119

P. Bakowski

ARM clocking scheme
ARM data path timing
ARM adder design

ARM ALU design

ARM barrel shifter

ARM multipliers |

ARM register bank
ARM data path layout
ARM control path

120

P. Bakowski

ARM clocking scheme
ARM data path timing
ARM adder design

ARM ALU design

ARM barrel shifter

ARM multipliers

ARM register bank J

ARM data path layout
ARM control path

121

P. Bakowski

ARM clocking scheme
ARM data path timing
ARM adder design

ARM ALU design

ARM barrel shifter

ARM multipliers

ARM register bank

ARM data path layout J

ARM control path

122

P. Bakowski

ARM clocking scheme
ARM data path timing
ARM adder design

ARM ALU design

ARM barrel shifter

ARM multipliers

ARM register bank

ARM data path layout
ARM control path J

123

