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i_ABM_dﬁla_path timing
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L] ARM data path timing

- Timing in a 3-stage pipeline.
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iABMJ_-adder design
ARM1 — the original ripple-carry adder:
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iABMJ_-adder design

Using CMOS and-or-invert gate for the A
carry logic and alternating and-or logic so
that event bits use the circuit shown and
odd bits use the dual circuit with inverted
inputs and outputs and and-or gates
swapped around, the worst-case carry

path is 32 gates long. /
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#ﬁMLaddgr design

- To reduce the propagation path length ARM2
used a 4-bit carry look-ahead logic.

A[3:0] G >
— Cout[3]
P .
B[3:0] sum[3:0]
—
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‘ABM_Z;addar_design

- Exercise: Draw the logic scheme of the circuit fi
Generate and Propagate signals
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%BMLALU_design

control lines
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%BM_G;adder design

The further reduction of the propagation time is

provided by a carry-select adder implemented with
ARM 6. P

This form of adder computes the sums of various
fields of the word for a carry-in both zero and one.

The final result is selected by using the correct carry-
in value to control a multiplexer.
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fBM_G;adder design

The further reduction of the propagation time is

provided by a carry-select adder implemented with
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A Iatch

/
B latch

/
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%BM_G_A.ILU design

/
A Iatch B latch ‘
| |
/ /
invert A XOR gates XOR gates

‘ Invert B
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/
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%BM_B_ALU_demgn ,
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fﬂM_ba.tr_ej_shifter

The shifter delay is critical because it is connected
in series with ALU unit.

Therefore, it is implemented as a 32*32 cross-bar
switch matrix where each input is steered directly
to the appropriate output.

If a pre-charged logic is used, each switch may be
implemented as one transistor.
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arrel shifter
right3 right2 rightl  no shift]
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arrel shifter
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arrel shifter
right3 right2 rightl no shift
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%ﬂM_ba.tr_ej_shifter

In the ARM the barrel shifter operates in negative

logic where a ‘1’ is represented as a potential near
_ground and a 0’ by a potential near supply. )

Pre-charging sets all the outputs to a logic ‘0’ (supply

potential), so those outputs that are not connected to

any input during a particular switching operation

remain at ‘0’ giving the zero filling required by the

shift semantics.

>

pre-charging to ‘0’
P. Bakowski 44
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#BM_ba.tLeJ_shifter . rotations

For rotate right function, the right shift diagonal is J

enabled together with the complementary shift diagonal.

For example, on the 4-bit matrix rotate right one bit is
implemented using the ‘rightl’ and the ‘left3’ (3=4-1)
diagonals.
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,}amunummier design

ARM1 no hardware for multiplication J

ARM2 low-cost multiplication hardware: 32-bit
result multiply and multiply-accumulate instructions

ARMG6 high performance multiplication hardware:

64-bit result multiply and multiply-accumulate
instructions
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fﬂM_muﬂiplier design

ARM1 no hardware for multiplication

ARM2 low-cost multiplication hardware: 32-bit
result multiply and multiply-accumulate instructions

ARMG6 high performance multiplication hardware:
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W - cost multiplier

Low-cost multiplier employs the barrel shifter and
ALU to generate a 2-bit product in each clock cycle.

Early-termination is used to stop the iterations when
there are no more ones in the multiply register.

The multiplier logic implements a modified Booth’s
algorithm that allows to generate 2-bit sub-products
In one step.

The additional hardware is limited to a dedicated two-
bits-per-cycle shift register and a few gates for the
control logic.
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fBM_Iva_cost multiplier

Carry-in multiplier |logic shift |ALU Carry-out
0 *0 2N A+0 0

*1 2N A+B 0

*2 2N+1 A-B 1

*3 2N A-B 1
1 *0 2N A+B 0

*1 2N+1 A+B 0

*2 2N A-B 1

*3 2N A+0 1

P. Bakowski
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%BM_hjgh:speed multiplier

High performance multiplication employs redundant
binary representation to avoid the carry-propagate
delays associated with adding partial products

together. y

Intermediate results are held as partial sums and
partial carries. These results are added in the main
ALU at the end of multiplication.

During the multiplication the partial sums and carries
are combined in carry save adders where carries may
propagate only one bit per addition stage.
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igh-speed multiplier

High performance multiplication employs redundant
binary representation to avoid the carry-propagate
delays associated with adding partial products
together.

Intermediate results are held as partial sums and
partial carries. These results are added in the main
ALU at the end of multiplication.

During the multiplication the partial sums and carries
are combined in carry save adders where carries may
propagate only one bit per addition stage.
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iCALLy;sale_adders

The simplest carry-save adder has 3 inputs and 2
outputs that accept a partial sum, a partial carry and
a partial product, all of the same binary weight.

J

The output produce a new partial sum and a new
partial carry where the carry has twice the weight of
the sum.

The internal logic of each simple adder is identical to
a conventional full adder, but the interconnection
structure is different.
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iCALLy;sale_ adders
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iCa.tr_y;pLopagate adder

A B Cin A B Cin A B Cin A B Cin

*Vrldiirllﬁrldiir

Cout Sum Cout Sum Cout Sum Cout Sum

The carry-propagate adder takes two conventional
(irredundant) binary numbers as inputs and produces
a binary sum. )
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Cin

A T A 5 5v

,—‘uﬂﬁ—wet

Cout UM cout UM cout  SUM oy UM

The carry-save adder takes one binary and one
redundant (partial sum and partial carry) input and
produces a sum in a redundant binary representation.
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iCALLy;sale_adder

During the iterative multiplication stages, the sum is
fed back and combined with one partial product in
each iteration.

When all partial products have been added, the
redundant representation is converted into a
conventional binary number by adding the partial sum
and partial carry in the carry propagate adder.
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iCALLy;sale_adder

During the iterative multiplication stages, the sum is
fed back and combined with one partial product in
each iteration.

When all partial products have been added, the
redundant representation is converted into a
conventional binary number by adding the partial sum
and partial carry in the carry propagate adder. )
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i:ljgh_pgrjm:mance multiplier

High speed multipliers have several layers of carry-
save adders, each handling one partial product.

In some ARM cores the carry-save array has four
layers of adders, each handling two multiplier bits (see
Booth algorithm), so the array can multiply eight bits
per clock cycle.

The array is cycled up to four times, using early
termination, to complete multiplication in less than
four cycles when the multiplier has sufficient zeros in
the top bits.
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per clock cycle.
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%BM_LegLsier bank

ARM has 31 general-purpose 32-bit registers containing
almost 1 Kbytes of data.

32-bit register

31 general-purpose
registers
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ZIABM register cell

I The transistor circuit of the register cell used in ARM cores
up to the ARM6 is based on an asymmetric cross-coupled
pair of CMOS inverters which is overdriven by a strong

signal from the ALU bus when the register contents are
changed.

write read A read B
PR I S R
A bus = [—
B bus ===

SN AN
P. Bakowski_'_i-i-»-ij-'_i_'_im




%BM_LegisjeLcell
‘he transistor circuit of the register cell used in ARM cores

up to the ARM6 is based on an asymmetric cross-coupled
pair of CMOS inverters which is overdriven by a strong
signal from the ALU bus when the register contents are

changed.
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gister cell

The feedback inverter is made weak in order to minimize
the cell’s resistance to the new value.

write read A read B
ALU bus ==

A bus ==
B bus ==

C — S
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%BM_Legisjer_cell

The A and B buses are pre-charged to Vdd during phase 2
of the clock cycle, so the register cell needs only discharge
the read buses, which it does through n-type pass
transistors when the read lines are enabled. Y

write read A read B
P . S—
A bus ==

B bus ===

il
1

-

| o
_—i-i-»-i—_
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%BM_Le_gisjer_cell

The A and B buses are pre-charged to Vdd during phase 2
of the clock cycle, so the register cell needs only discharge
the read buses, which it does through n-type pass
transistors when the read lines are enabled. Y

write read A read B
PP . S
A bys |Tem= f— \

B bus ==

| .
_—i-i-»-i—‘_
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%BM_LegLsier cell

This register cell works well with a 5 V supply. |
In new designs ARM uses lower supply voltages where
writing a ‘1’ through the n-type pass transistor would

be impossible.

Instead it uses a full CMOS transmission gate requiring
complementary write enable control lines.

N |

r

N-MOS P MOS
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gister cell

This register cell works well with a 5 V supply.

In new designs ARM uses lower supply voltages where
writing a ‘1’ through the n-type pass transistor would
be impossible.

Instead it uses a full CMOS transmission gate requiring
complementary write enable control lines.
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fﬂM_Legisjer bank

The register cells are arranged in columns to form a
32-bit register, and the columns are packed
together to form the complete register bank.

The decoders for the read and write enable lines
are packed above the columns; the enable lines run
vertically and the data buses horizontally across the
array of register cells.
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%BM_Legisjema nk

|1 Abs read decodets. || ]

|17 "B bUs read decoderts | ]
vdd [ ] Dwrite decodefis ] = T
Vss I |1 1_1 ALU bus
11 R P
register cells | A bus
- -
1 |_1_1_1 Bbus
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%BM_Legisjemank

|1 Abs read decodets. || ]
|1 Bbus read decodets || ]

vdd [ ] Dwrite decodefis ] = T
Vss
R O |1 1_1 ALU bus
11 ]

PC bus I register cells | A bus
~— _— !
= R A |_1__1__1 Bbus

INC bus 4
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%BM_Legisier bank

The ARM program counter register is physically part of
the register bank, but it has two write and three read
ports whereas the other registers have one write and
two read ports.

J

\
__ &= ALUbus

PC bus _|_|

\'_'_._—!—/ A bus

INC bus J

P. Bakowski
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%BM_Legisier bank

The ARM program counter register is physically part of
the register bank, but it has two write and three read
ports whereas the other registers have one write and
two read ports.
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"
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a_path layout

The ARM datapath is laid out to a constant pitch per
bit.

Each function is laid out to this pitch.
The buses pass over the functional blocks.

The order of the blocks is chosen to minimize the
number of additional buses passing over more
complex functions.

P. Bakowski
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a_path layout
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%BM_daJa_pajLLayout & buses

address register ‘

register bank |

. . ' muitiplier

Spllfrer
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a_path layout & buses
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a_path layout & buses
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data write bus |
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The control path in simpler ARM cores has
three structural components:

an instruction decoder PLA
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N main functional units

C

ecentralized control units for specific

Instructions

P. Bakowski

105



iABM_\:QmLoI path

The control path in simpler ARM cores has
three structural components:

an instruction decoder PLA

wit

C

distributed secondary control associated

h main functional units

ecentralized control units for specific

Instructions

P. Bakowski

106



i_ABM_\:.omr_ol path

The control path in simpler ARM cores has
three structural components:

an instruction decoder PLA

wit

distributed secondary control associated

h main functional units

C

ecentralized control units for specific

Instructions

P. Bakowski

107



i_ABM_\:.omr_ol path

The control path in simpler ARM cores has
three structural components:

an instruction decoder PLA

wit

C

distributed secondary control associated

h main functional units

ecentralized control units for specific

Instructions

P. Bakowski

108



*ABMJ_nﬂmcjion decoder PLA

Instruction

cycle
counter

Class of instruction: ALU, load/store, branch,
CO-processor, ..

P. Bakowski 109



econdary control

instruction |

cycle
counter

address
control

register\r ALU \r shifter
control control control

110




centralized control

CO-Processor \

I multiply |

control
cycle | :
counter

load/store

control

instruction |

/

—

address reglster ALU \r shifter
control control control control

P. Bakowski




iABM_haLd_\:_ores versus soft cores

There are two kinds of supports for the implementation
of ARM cores:

a hard macrocell that is delivered as physical layout
ready to be incorporated into the final design

a soft macrocell that is delivered as a synthesizable
design expressed in a hardware description language
such as Verilog HDL or VHDL
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