The ARM Architecture

Bakowski

bako@ieee.org

ipmme

ARM history

ARM architecture
ARM ISA features
ISA extensions

Architecture implementations

P. Bakowski

ipmme

ARM history
ARM architecture

ARM ISA features
ISA extensions

Architecture implementations

P. Bakowski

ipmme

ARM history
ARM architecture
ARM ISA features (Instruction Set Architecture)

ISA extensions

Architecture implementations

P. Bakowski

iomme

ARM history
ARM architecture
ARM ISA features

ISA extensions

Architecture implementations

P. Bakowski

iomme

ARM history

ARM architecture
ARM ISA features
ISA extensions

Architecture implementations

P. Bakowski

iABM_pLeAst,to ry

Started in 1983 — as ACORN Ltd

designing new architecture after the refusal of using
80286

P. Bakowski

iABM_pLedljsIo ry

Started in 1983 — as ACORN Ltd

designing new architecture after the refusal of using
80286

P. Bakowski

iABM_p.r_eﬂsttory

Started in 1983 — as ACORN Ltd

designing new architecture after the refusal of using
80286

e ARMv1 — 1985 based on RISC 1

P. Bakowski

iABM_p.r_edlistory

Started in 1983 — as ACORN Ltd

designing new architecture after the refusal of using
80286

ARMv1 - 1985 based on RISC 1
ARMv2 — 32-bit data; 26-bit address

simple RISC architecture, 30 K transistors, no
microcode, no cache

J

P. Bakowski 10

iAdm;ed_BISC Machines

Advanced Risc Machines - 1990

spun off as separate company working with Apple
on newer versions of core

ARM6 created
= basis for Apple Newton PDA
= full 32-bit CPU with multiplication

P. Bakowski

11

iAdm;ed_BISC Machines

Advanced Risc Machines - 1990

spun off as separate company working with Apple
on newer versions of core

J

ARM6 created
= basis for Apple Newton PDA
= full 32-bit CPU with multiplication

P. Bakowski

12

iAdm;ed_BISC Machines

Advanced Risc Machines - 1990

spun off as separate company working with Apple
on newer versions of core

ARMG6 created — implementation of ARMv2

= basis for Apple Newton PDA
= full 32-bit CPU with multiplication

P. Bakowski

13

iAdm;ed_BISC Machines

Advanced Risc Machines - 1990

spun off as separate company working with Apple
on newer versions of core

ARM6 created
= basis for Apple Newton PDA |
= full 32-bit CPU with multiplication

P. Bakowski

14

iAdmm:eﬂ_BJSC Machines

Advanced Risc Machines - 1990

spun off as separate company working with Apple
on newer versions of core

ARM6 created
= basis for Apple Newton PDA
® full 32-bit CPU with multiplication |

P. Bakowski

15

iABM_pJaceJn the market

ARM is leading provider of 32-bit embedded RISC
MICroprocessors:

common architecture: compatible versions
high performance

ow power consumption

ow system cost

P. Bakowski

16

iABM_pJace_on the market of P

Millions of processors

N

Mot. 68K MIPS IA-32

PowerPC

P. Bakowski

ARM

sales in 2002

17

*ABM_place_on the market of P

Millions of processors

N

ARM

500

Mot. 68K MIPS IA-32

50 PowerPC

L L L LB L L L

sales in 2002

P. Bakowski

18

iABM_appchations

Embedded real-time systems for: J

Mass storage
Automotive
Industrial
Network
m Secure applications — smartcards and SIMs

m Open platforms running complex OS

P. Bakowski

19

iABM_appILcations

Embedded real-time systems for:

Mass storage J

Automotive
Industrial
Network
m Secure applications — smartcards and SIMs

m Open platforms running complex OS

P. Bakowski

20

iABM_appILcations

Embedded real-time systems for:
Mass storage

Automotive J

Industrial
Network
m Secure applications — smartcards and SIMs

m Open platforms running complex OS

P. Bakowski

21

iABM_appl'Lcations

Embedded real-time systems for:
Mass storage
Automotive
Industrial J

Network

m Secure applications — smartcards and SIMs

m Open platforms running complex OS

P. Bakowski

22

iABM_appl'Lcations

Embedded real-time systems for:
Mass storage
Automotive
Industrial
Network J

m Secure applications — smartcards and SIMs

m Open platforms running complex OS

P. Bakowski

23

iABM_apijcations

Embedded real-time systems for:

Mass storage
Automotive
Industrial
Network

m Secure applications — smartcards and SIMs J

m Open platforms running complex OS

P. Bakowski

24

iABM_appchations

Embedded real-time systems for:

Mass storage
Automotive
Industrial
Network
m Secure applications — smartcards and SIMs

m Open platforms running complex OS

P. Bakowski

25

iLi;ensmg_ARM technology

Implementation license J

most popular
hard or soft core (macro cells)

complete information to design & manufacture
integrating circuits containing ARM core

plan to be used in several products

P. Bakowski 26

iu;ensmg_ARM technology

Implementation license

most popular J

hard or soft core (macro cells)

complete information to design & manufacture
integrating circuits containing ARM core

plan to be used in several products

P. Bakowski 27

iu;ensmg_ARM technology

Implementation license
most popular

hard or soft core (macro cells) J

complete information to design & manufacture
integrating circuits containing ARM core

plan to be used in several products

P. Bakowski 28

iuggnsmg_ABM technology

Implementation license
most popular
hard or soft core (macro cells)

complete information to design & manufacture
integrating circuits containing ARM core

J

plan to be used in several products

P. Bakowski

29

*Li;ensing_ARM technology

Implementation license
most popular
hard or soft core (macro cells)

complete information to design & manufacture
integrating circuits containing ARM core

plan to be used in several productsJ

P. Bakowski 30

iLicensing ARM technology

Foundry license J

for fab-less semiconductor vendors

to develop & sell ARM core-based products
manufactured by licensed companies (foundries)

P. Bakowski 31

iLicensing ARM technology

Foundry license

for fab-less semiconductor vendors J

to develop & sell ARM core-based products
manufactured by licensed companies (foundries)

e

E/i

=

P. Bakowski 32

iu;msmgARM technology

Foundry license
for fab-less semiconductor vendors

to develop & sell ARM core-based products
manufactured by licensed companies (foundries)

P. Bakowski 33

*Licsnsmg_ABM technology

Architecture license J

to develop own CPU implementations
INTEL
SAMSUNG
TI

P. Bakowski

34

iucensmg_ABM technology

Architecture license
to develop own CPU implementations J
INTEL
SAMSUNG
TI

P. Bakowski

35

*Licsnsmg_ABM technology

Architecture license
to develop own CPU implementations
INTEL
SAMSUNG
TI y

P. Bakowski 36

iLicensing.ARM technology

Academic license J

basic building blocks of the core to allow
simulation and design of prototypes parts for
academic research

enables a core simulation environment to be
created

P. Bakowski 37

*Licensmg_ABM technology

Academic license

basic building blocks of the core to allow
simulation and design of prototypes parts for
academic research y

enables a core simulation environment to be
created

P. Bakowski 38

iLicensing.ARM technology

Academic license

basic building blocks of the core to allow
simulation and design of prototypes parts for
academic research

enables a core simulation environment to be
created

P. Bakowski 39

iALCJlee_CIULe definition

The rules for how the microprocessor will behave: J

instruction set specification (ISA)
programming model
operating system interface

specification for the external interface

P. Bakowski

40

iALchjIe_c_tULe definition

The rules for how the microprocessor will behave:

instruction set specification (ISA) J

programming model
operating system interface

specification for the external interface

P. Bakowski

41

iALchjIe_c_tULe definition

The rules for how the microprocessor will behave:

instruction set specification (ISA)

programming model: registers, flags, .. J

operating system interface

specification for the external interface

P. Bakowski

42

iALchjIe_c_tULe definition

The rules for how the microprocessor will behave:
instruction set specification (ISA)
programming model

operating system interface: modes, MMU, ..

specification for the external interface

P. Bakowski

43

iALchjIe_c_tULe definition

The rules for how the microprocessor will behave:
instruction set specification (ISA)
programming model
operating system interface

specification for the external interface

P. Bakowski

44

i_ABM_aL\:Jlﬂecture versions

m ARMv1l

ﬂrst version of ARM processor

26-bit addressing, no multiply, no coprocessor
m ARMv2
included 32-bit result multiply, coprocessor

ARM2 (implementation): first commercial chip

P. Bakowski

45

i_ABM_aLcjliIecture versions

m ARMv1

first version of ARM processor J

26-bit addressing, no multiply, no coprocessor
m ARMv2
included 32-bit result multiply, coprocessor

ARM2 (implementation): first commercial chip

P. Bakowski

46

iABM_aL\:mtecture versions

m ARMv1

first version of ARM processor

26-bit addressing, no multiply, no coprocessor J
m ARMv2

included 32-bit result multiply, coprocessor

ARM2 (implementation): first commercial chip

P. Bakowski 47

i_ABM_aLcjliIecture versions

m ARMv1

first version of ARM processor

26-bit addressing, no multiply, no coprocessor
mARMV2 |

included 32-bit result multiply, coprocessor

ARM2 (implementation): first commercial chip

P. Bakowski

48

iABM_aL\:mtecture versions

m ARMv1

first version of ARM processor

26-bit addressing, no multiply, no coprocessor
m ARMv2

included 32-bit result multiply, coprocessor J

ARM2 (implementation): first commercial chip

P. Bakowski

49

iABM_aL\:mtecture versions

m ARMv1

first version of ARM processor

26-bit addressing, no multiply, no coprocessor
m ARMv2

included 32-bit result multiply, coprocessor

ARM2 (implementation): first commercial chip |

P. Bakowski 50

i_ABM_aL\:Jlﬂecture versions

O ARMvZa
ARM3 chip with on chip cache

included atomic load and store
coprocessor 15 : cache management

m ARMv3
32-bit addressing, separate CPSR, SPSR
virtual memory support

ARMS6, first processor after being independent

P. Bakowski

51

i_ABM_aLcjliIecture versions

m ARMv2a
ARM3 chip with on chip cache |

included atomic load and store

coprocessor 15 : cache management

m ARMv3
32-bit addressing, separate CPSR, SPSR
virtual memory support

ARMS6, first processor after being independent

P. Bakowski

52

iABM_aLcnitecture versions

m ARMv2a
ARM3 chip with on chip cache

included atomic load and store J

coprocessor 15 : cache management

m ARMv3
32-bit addressing, separate CPSR, SPSR
virtual memory support

ARMS6, first processor after being independent

P. Bakowski

53

iABM_aL\:mtecture versions

m ARMv2a
ARM3 chip with on chip cache
included atomic load and store
coprocessor 15 : cache management J
m ARMv3
32-bit addressing, separate CPSR, SPSR

virtual memory support

ARMS6, first processor after being independent

P. Bakowski

54

iABM_aLcnitecture versions

m ARMv2a
ARM3 chip with on chip cache
included atomic load and store
coprocessor 15 : cache management
mARMV3 |
32-bit addressing, separate CPSR, SPSR

virtual memory support

ARMS6, first processor after being independent

P. Bakowski

55

i_ABM_aLcjliIecture versions

m ARMv2a
ARM3 chip with on chip cache
included atomic load and store
coprocessor 15 : cache management
m ARMv3
32-bit addressing, separate CPSR, SPSR J

virtual memory support

ARMS6, first processor after being independent

P. Bakowski

56

iABM_aLcnitecture versions

m ARMv2a
ARM3 chip with on chip cache
included atomic load and store
coprocessor 15 : cache management
m ARMv3
32-bit addressing, separate CPSR, SPSR

virtual memory support J

ARMS6, first processor after being independent

P. Bakowski

57

iABM_aL\:mtecture versions

m ARMv2a
ARM3 chip with on chip cache
included atomic load and store
coprocessor 15 : cache management

m ARMv3
32-bit addressing, separate CPSR, SPSR
virtual memory support

ARMS6, first processor after being independentJ

P. Bakowski 58

added half word load and store
m ARMv5

improved ARM and Thumb interworking, count
leading zeroes (CLZ) instruction

E: enhanced DSP instructions including
saturated arithmetic and 16-bit multiply

J: support for accelerated Java bytecode
execution

P. Bakowski 59

added half word load and store J
m ARMv5

improved ARM and Thumb interworking, count
leading zeroes (CLZ) instruction

E: enhanced DSP instructions including
saturated arithmetic and 16-bit multiply

J: support for accelerated Java bytecode
execution

P. Bakowski 60

added half word load and store
m ARMvV5

improved ARM and Thumb interworking, count
leading zeroes (CLZ) instruction

E: enhanced DSP instructions including
saturated arithmetic and 16-bit multiply

J: support for accelerated Java bytecode
execution

P. Bakowski 61

added half word load and store
m ARMv5

improved ARM and Thumb interworking, count
leading zeroes (CLZ) instruction

|

E: enhanced DSP instructions including
saturated arithmetic and 16-bit multiply

J: support for accelerated Java bytecode
execution

P. Bakowski

62

added half word load and store
m ARMv5

improved ARM and Thumb interworking, count
leading zeroes (CLZ) instruction

E: enhanced DSP instructions including
saturated arithmetic and 16-bit multiply

J: support for accelerated Java bytecode
execution

P. Bakowski 63

added half word load and store
m ARMv5

improved ARM and Thumb interworking, count
leading zeroes (CLZ) instruction

E: enhanced DSP instructions including
saturated arithmetic and 16-bit multiply

J: support for accelerated Java bytecode J
execution

P. Bakowski 64

ﬁARM architecture versions

ARMvE

AScale™
ARMvS . _j}
AHH%ZD
ARMSE
ARM7TTDMI ARMT720T
V4 : J
rongARM® .a.li'M)sz oT
1994 1936 1953 2000

implementations
P. Bakowski

i_ABM_aL\:Jlﬂecture versions

m ARMv6

mcIude TEJ enhancements

memory management
multiprocessing

SIMD instructions (media)

6 new status bits: GE[3:0], E, A

P. Bakowski

66

iABM_aL\:mtecture versions

m ARMv6

include TEJ enhancements J

memory management
multiprocessing

SIMD instructions (media)

6 new status bits: GE[3:0], E, A

P. Bakowski

67

iABM_aL\:mtecture versions

m ARMv6
include TEJ enhancements

memory management J

multiprocessing
SIMD instructions (media)
6 new status bits: GE[3:0], E, A

P. Bakowski

68

i_ABM_aLcjleecture versions

m ARMv6
include TEJ enhancements
memory management

multiprocessing J

SIMD instructions (media)
6 new status bits: GE[3:0], E, A

P. Bakowski

69

iABM_aL\:mtecture versions

m ARMv6
include TEJ enhancements
memory management
multiprocessing
SIMD instructions (media) J
6 new status bits: GE[3:0], E, A

P. Bakowski

/0

i_ABM_aLcjleecture versions

m ARMv6
include TEJ enhancements
memory management
multiprocessing
SIMD instructions (media)
6 new status bits: GE[3:0], E, A J

P. Bakowski

/1

P. Bakowski

2002

2004

2006

time

72

A features
Based on Berkeley RISC design |

Features used:
load-store architecture
fixed-length 32-bit instructions
3-address instruction formats
Features rejected
register windows
delayed branches
single-cycle execution of all instructions

P. Bakowski 73

A features

Based on Berkeley RISC design

Features used: J

load-store architecture
fixed-length 32-bit instructions
3-address instruction formats
Features rejected
register windows
delayed branches
single-cycle execution of all instructions

P. Bakowski

74

A features

Based on Berkeley RISC design
Features used:

load-store architecture J

fixed-length 32-bit instructions
3-address instruction formats
Features rejected
register windows
delayed branches
single-cycle execution of all instructions

P. Bakowski 75

A _features
Based on Berkeley RISC design

Features used:
load-store architecture

fixed-length 32-bit instructions

3-address instruction formats
Features rejected
register windows
delayed branches
single-cycle execution of all instructions

P. Bakowski

76

A features

Based on Berkeley RISC design
Features used:
load-store architecture
fixed-length 32-bit instructions

3-address instruction formats

Features rejected
register windows
delayed branches
single-cycle execution of all instructions

P. Bakowski

77

A _features
Based on Berkeley RISC design

Features used:
load-store architectures
fixed-length 32-bit instructions
3-address instruction formats

Features rejected J

register windows
delayed branches
single-cycle execution of all instructions

P. Bakowski

/8

A _features
Based on Berkeley RISC design

Features used:
load-store architecture
fixed-length 32-bit instructions
3-address instruction formats
Features rejected

register windows |

delayed branches
single-cycle execution of all instructions

P. Bakowski 79

A _features
Based on Berkeley RISC design

Features used:
load-store architecture
fixed-length 32-bit instructions
3-address instruction formats
Features rejected
register windows

delayed branches J

single-cycle execution of all instructions

P. Bakowski 80

A _features
Based on Berkeley RISC design

Features used:
load-store architecture
fixed-length 32-bit instructions
3-address instruction formats
Features rejected
register windows
delayed branches

single-cycle execution of all instructions J

P. Bakowski

81

32-bit instructions |

17 visible registers

*ABM_pLogLamming model
RO
R1

R11 15 general purpose
R12 PC

CPSR
8/16/32 bits data types

7 modes of operation: usr, fiq,
irq, svc, abt, sys, und

P. Bakowski 82

*ABM_pLogLamming model
RO
R1

32-bit instructions
17 visible registers |
R11 15 general purpose
R12 PC
CPSR

8/16/32 bits data types

7 modes of operation: usr, fiq,
irq, svc, abt, sys, und

P. Bakowski 83

32-bit instructions

*ABM_pLogLamming model
RO
R1

17 visible registers

R11 15 general purpose J

R12 PC
CPSR

8/16/32 bits data types

7 modes of operation: usr, fiq,
irq, svc, abt, sys, und

P. Bakowski 84

32-bit instructions

*ABM_pLogLamming model
RO
R1

17 visible registers
R11 15 general purpose
R12 PC_ |
CPSR
8/16/32 bits data types

7 modes of operation: usr, fiq,
irq, svc, abt, sys, und

P. Bakowski 85

32-bit instructions

*ABM_pLogLamming model
RO
R1

17 visible registers

R11 15 general purpose
R12 PC
CPSR |

8/16/32 bits data types

7 modes of operation: usr, fiq,
irq, svc, abt, sys, und

P. Bakowski 86

32-bit instructions

*ABM_pLogLamming model
RO
R1

17 visible registers

R11 15 general purpose
R12 PC
CPSR
8/16/32 bits data types |

7 modes of operation: usr, fiq,
irq, svc, abt, sys, und

P. Bakowski 87

32-bit instructions

*ABM_pLogLamming model
RO
R1

17 visible registers
R11 15 general purpose
R12 PC
CPSR
8/16/32 bits data types

7/ modes of operation: usr, fiq,
irq, svc, abt, sys, und

P. Bakowski 88

i_ABM_\:QpLo_cessor interface

Supports a general-purpose extension of its
instruction set through the addition of hardware
COprocessors

Support for up to 16 logical coprocessors
16 private registers of any width
Coprocessors use load-store architecture

Coprocessors use handshaking to perform
instructions

P. Bakowski

89

iABM_\:QpLosessor interface

Supports a general-purpose extension of its
instruction set through the addition of hardware
COprocessors

Support for up to 16 logical coprocessors

16 private registers of any width
Coprocessors use load-store architecture

Coprocessors use handshaking to perform
instructions

P. Bakowski

90

iABM_:ppLosessor interface

Supports a general-purpose extension of its
instruction set through the addition of hardware
COprocessors

Support for up to 16 logical coprocessors

16 private registers of any width

Coprocessors use load-store architecture

Coprocessors use handshaking to perform
instructions

P. Bakowski

91

iABM_\:QpLosessor interface

Supports a general-purpose extension of its
instruction set through the addition of hardware
COprocessors

Support for up to 16 logical coprocessors
16 private registers of any width

Coprocessors use load-store architecture

Coprocessors use handshaking to perform
instructions

P. Bakowski

92

iABM_:ppLosessor interface

Supports a general-purpose extension of its
instruction set through the addition of hardware
COprocessors

Support for up to 16 logical coprocessors
16 private registers of any width
Coprocessors use load-store architecture

Coprocessors use handshaking to perform
instructions

P. Bakowski

93

ic_ommonaLexecution

31.. 28, 27 . 0

cond

f

Every instruction has a 4-bit condition code J

All instructions may be executed conditionally including:
supervisor instructions and
coprocessor instructions,

excluding Thumb instructions

P. Bakowski 94

ic_ommonaLexecution

31.. 28, 27 . 0

cond

Every instruction has a 4-bit condition code

All instructions may be executed conditionally including: J

supervisor instructions and
coprocessor instructions,

excluding Thumb instructions

P. Bakowski 95

ic_ommonaLexecution

31.. 28, 27 . 0

cond

Every instruction has a 4-bit condition code
All instructions may be executed conditionally including:

supervisor instructions and J

coprocessor instructions,

excluding Thumb instructions

P. Bakowski 96

ic_ommonaLexecution

31.. 28, 27 . 0

cond

Every instruction has a 4-bit condition code
All instructions may be executed conditionally including:
supervisor instructions and

coprocessor instructions, J

excluding Thumb instructions

P. Bakowski 97

ic_ommonaLexecution

31.. 28, 27 . 0

cond

Every instruction has a 4-bit condition code

All instructions may be executed conditionally including:
supervisor instructions and
coprocessor instructions,

excluding Thumb instructions (16-bit instructions) J

P. Bakowski 98

iQoncﬂtLonaLexecution

Each instruction mnemonic may be extended by
appending two letters: EQ,NE,GE,LE,GT, ..

J

subgt Ri, Ri, Rj
suble Ri, Ri, Rj

bne loop

P. Bakowski

99

*C_ommonaLexecution

Each instruction mnemonic may be extended by
appending two letters: EQ,NE,GE,LE,GT, ..

subgt Ri, Ri, R} e 3-address arithmetical
suble Ri, Ri, Rj <€¢== Instructions

bne loop

P. Bakowski 100

*C_ommonaLexecution

Each instruction mnemonic may be extended by
appending two letters: EQ,NE,GE,LE,GT, ..

subgt Ri, Ri, Rj

suble Ri, Ri, Rj -
conditional branch
bne loOp @ jnstruction

P. Bakowski 101

iQoncﬂtLonaLexecution

conditional execution cuts down on the space
available for displacement memory access

avoids branch instructions for simple if statements

P. Bakowski 102

Conditio execution

int ged(int i, int j) b test

{ Ri Ri Ri
while (i!=j) loop sul;lgt RI., RI., R]
{if (i>]) i -=j; suble |Rj, Rj, Ri
else j -=i; } test |cmp |Ri, Rj
return |i; bne |loop

}

P. Bakowski 103

Conditio execution

int ged(int i, int j) b test

{ I . . .
while (i!=j) Jo Suglgt E!’ ';'.' ';J.
i (i>)) i == e e
else j -=i: } test [cmp |Ri, Rj
return i; bne |loop

h

P. Bakowski 104

Conditio execution

int ged(int i, int j) b test

{ | Ri, Ri, Rj
while (i!=j) 0op | subgt il
{if (i) i -=j; suble |Rj, Rj, Ri
else j -=i: test [cmp |Ri, Rj
return i bne |loop

}

P. Bakowski 105

iMQJﬂpJg_r_e.glster transfer operation

Any subset (or all) of the 16 registers visible
in the current operating mode to be loaded from

or stored to memory)

Used on procedure entry and return to save
and restore workspace registers

Useful for high-bandwidth memory block copy
routines.

P. Bakowski 106

iMuJﬂpJg_r_e.gjster transfer operation

Any subset (or all) of the 16 registers visible
in the current operating mode to be loaded from

or stored to memory
Used on procedure entry and return to save J

and restore workspace registers

Useful for high-bandwidth memory block copy
routines.

P. Bakowski 107

iMuJﬂpJg_r_e.gjster transfer operation

Any subset (or all) of the 16 registers visible
in the current operating mode to be loaded from

or stored to memory

Used on procedure entry and return to save
and restore workspace registers

Useful for high-bandwidth memory block copy
routines.

P. Bakowski 108

iMQJLiQIﬁ_mLster transfer operation

31.. 28, 27..25, 24..20, 19..16, 15 . 0

100 | PUSWL| Rn

register list ‘

move data
instruction
operating code J

P. Bakowski 109

*Mu]ﬂglﬁ_@ﬁjer transfer operation

31.. 28, 27..25, 24..20, 19..16, 15 . 0

100 | PUSWL| Rn | register list |
\ move data
operational
flags y

P. Bakowski 110

*Mu]ﬂglg;mbjer transfer operation

31.. 28, 27..25, 24..20, 19..16, 15 . 0

100 | PUSWL| Rn

register list ‘

pre/post-index |

P. Bakowski 111

*Mujlimg;@];ster transfer operation

31.. 28, 27..25, 24..20, 19..16, 15 . 0

100 | PUSWL| Rn

up/down |

pre/post-index

P. Bakowski 112

*Mmumg;mﬁter transfer operation

31.. 28, 27..25, 24..20, 19..16, 15 . 0

100 | PUSWL | Rn

restore PSR, force user bit |
up/down

pre/post-index

P. Bakowski 113

iMQJLiQIﬁ_mLster transfer operation

31.. 28, 27..25, 24..20, 19..16, 15 . 0

100 | PUSWL| Rn

write-back auto-index]

restore PSR, force user bit
up/down

pre/post-index

P. Bakowski 114

iMQJLiQIﬁ_mLster transfer operation

31.. 28, 27..25, 24..20, 19..16, 15 . 0

100 | PUSWL | Rn

load/store

write-back auto-index

restore PSR, force user bit
up/down

pre/post-index

P. Bakowski 115

iMQJLiQIﬁ_mLster transfer operation

31.. 28, 27..25, 24..20, 19..16, 15 . 0

100 | PUSWL| Rn

base register

load/store
write-back auto-index

restore PSR, force user bit
up/down

pre/post-index

P. Bakowski 116

i&hjﬂmd_ALU operations

The operand can be shifted before being
processed by ALU and stored into a destination
register y

Operations include arithmetic, logical, and
register-register move

I+=(j<<3) can be performed as a single
instruction on the ARM

P. Bakowski 117

i&hjﬂmd_ALU operations

The operand can be shifted before being
processed by ALU and stored into a destination
register

Operations include arithmetic, logical, and
register-register move

I+=(j<<3) can be performed as a single
instruction on the ARM

P. Bakowski 118

i&hjﬂmd_ALU operations

The operand can be shifted before being
processed by ALU and stored into a destination
register

Operations include arithmetic, logical, and
register-register move

I+=(j<<3) can be performed as a single
instruction on the ARM

P. Bakowski 119

iALchlLechu_r_al support for OS

m coprocessor number 15 J

m on-chip system OS control processor controls:

cache memory

memory management and protection
pre-fetch buffer

branch target cache

system configuration signals

P. Bakowski 120

*AmhlL&cju_r_al support for OS

m coprocessor number 15

m on-chip system OS control processor controls: J

cache memory

memory management and protection
pre-fetch buffer

branch target cache

system configuration signals

P. Bakowski 121

iALchlLechu_r_al support for OS

m coprocessor number 15

m on-chip system OS control processor controls:

cache memory J

memory management and protection
pre-fetch buffer
branch target cache

system configuration signals

P. Bakowski

122

chitectural support for OS

m coprocessor number 15

m on-chip system OS control processor controls:

cache memory

memory management and protection J

pre-fetch buffer
branch target cache

system configuration signals

P. Bakowski 123

iALchlLechu_r_al support for OS

m coprocessor number 15

m on-chip system OS control processor controls:

cache memory

memory management and protection
pre-fetch buffer J

branch target cache

system configuration signals

P. Bakowski 124

iALchlLechu_r_al support for OS

m coprocessor number 15

m on-chip system OS control processor controls:

cache memory
memory management and protection
pre-fetch buffer

branch target cache J

system configuration signals

P. Bakowski 125

*AmhlL&cju_r_al support for OS

m coprocessor number 15

m on-chip system OS control processor controls:

cache memory

memory management and protection
pre-fetch buffer

branch target cache

system configuration signals J

P. Bakowski 126

operations

m translates virtual addresses into physical addresses J

physical
address

ﬁ

32-bit virtual
address

P. Bakowski 127

U itecture operations

m translates virtual addresses into physical addresses

m controls memory access permissions, aborting
illegal accesses

MMU illegal access |

P. Bakowski 128

W operations

m uses two-level page table with table-walking
hardware

page tables

disk

P. Bakowski 129

Wﬁgjure operations

m controls a TLB which stories recently used page J

translations

MMU

Translation Look-ahead BufferJ

P. Bakowski 130

U architecture operations

m provides 16 domains — each protected from one
another while using the same TLB

domain |

"N
e

domain |

MMU

Translation Look-ahead BufferJ

P. Bakowski 131

i&uppgﬂ_mr_ OS

Synchronization problem: |

mutually exclusive access to data structure
only one process can access this at any time

must wait until no other process is accessing the
data

need of a lock mechanism to prevent another
process to access the data

P. Bakowski 132

i&uppgﬂ_mr_ OS

Synchronization problem:

mutually exclusive access to data structure |

only one process can access this at any time

must wait until no other process is accessing the
data

need of a lock mechanism to prevent another
process to access the data

P. Bakowski 133

i&uppgﬂ_mr_ OS

Synchronization problem:
mutually exclusive access to data structure

only one process can access this at any time J

must wait until no other process is accessing the
data

need of a lock mechanism to prevent another
process to access the data

P. Bakowski 134

i&uppgﬂ_mr_ OS

Synchronization problem:
mutually exclusive access to data structure
only one process can access this at any time

must wait until no other process is accessing the J
data

need of a lock mechanism to prevent another
process to access the data

P. Bakowski 135

i&uppgﬂ_m_r_ OS

Synchronization problem:

mutually exclusive access to data structure
only one process can access this at any time

must wait until no other process is accessing the
data

need of a lock mechanism to prevent another
process to access the data

P. Bakowski 136

i&uppgﬂ_mr_ OS

ARM architecture supports the synchronization by
providing a “swap" instruction:

“swap” instruction is atomic
performs test and set operation

a register is set to the “busy” value and swapped
with the memory location containing the Boolean

If loaded value is interpreted as “free” the process
may continue the execution; otherwise must wait by
on the lock

P. Bakowski 137

i&uppgﬂ_tqr OS

ARM architecture supports the synchronization by
providing a “swap” instruction:

“swap” instruction is atomic |

performs test and set operation

a register is set to the “busy” value and swapped
with the memory location containing the Boolean

If loaded value is interpreted as “free” the process
may continue the execution; otherwise must wait by
on the lock

P. Bakowski 138

i&uppgﬂ_tqr OS

ARM architecture supports the synchronization by
providing a “swap” instruction:

“swap” instruction is atomic

performs test and set operation |

a register is set to the “busy” value and swapped
with the memory location containing the Boolean

If loaded value is interpreted as “free” the process
may continue the execution; otherwise must wait by
on the lock

P. Bakowski 139

i&uppgﬂ_m_r_ OS

ARM architecture supports the synchronization by
providing a “swap” instruction:

“swap” instruction is atomic
performs test and set operation

a register is set to the “busy” value and swapped
with the memory location containing the Boolean

If loaded value is interpreted as “free” the process
may continue the execution; otherwise must wait by
on the lock

P. Bakowski 140

i&uppgﬂ_m_r_ OS

ARM architecture supports the synchronization by
providing a “swap” instruction:

“swap” instruction is atomic
performs test and set operation

a register is set to the “busy” value and swapped
with the memory location containing the Boolean

iIf loaded value is interpreted as “free” the process
may continue the execution; otherwise must wait by
on the lock y

P. Bakowski 141

Context switching

B a process runs in a context J

m context state includes the values of all registers
including the program counter, stack pointer, etc.

m when a process switch takes place the context of
the old process must be saved and that of the new
process must be restored

ARM process

S

)| context

P. Bakowski 142

Context switching

B A Process runs in a context

m context state includes the values of all registers
including the program counter, stack pointer, etc.

m when a process switch takes place the context of
the old process must be saved and that of the new
process must be restored

ARM process

S

)| context

P. Bakowski 143

Context switching

B A Process runs in a context

m context state includes the values of all registers
including the program counter, stack pointer, etc.

m when a process switch takes place the context of
the old process must be saved and that of the new

process must be restored y
context
ARM process switch process
1 ¥ ~ 1
1 J 1 J

P. Bakowski 144

Context switching

m ARM provides architectural support for register
saving and restoring in privileged mode

m special forms of the load and store multiple
Instructions

m allows code running in a non-user mode to save
and restore the user registers from an area of
memory addressed by a non-user mode register

P. Bakowski 145

Context switching

m ARM provides architectural support for register
saving and restoring in privileged mode

m special forms of the load and store multiple
Instructions

m allows code running in a non-user mode to save
and restore the user registers from an area of
memory addressed by a non-user mode register

P. Bakowski 146

Context switching

m ARM provides architectural support for register
saving and restoring in privileged mode

m special forms of the load and store multiple
instructions

m allows code running in a non-user mode to save
and restore the user registers from an area of
memory addressed by a non-user mode register

P. Bakowski 147

Interface

m de-facto standard for on-chip bus J

m open standard
m framework for System-on-Chip designs

m strategy for interconnection and management of
functional blocks (SoC)

m one or more CPUs with multiple peripherals
m maximum confidence in peripheral reuse

m IP designers develop own products without
worrying about connectivity

P. Bakowski 148

interface

m de-facto standard for on-chip bus

m open standard |

m framework for System-on-Chip designs

m strategy for interconnection and management of
functional blocks (SoC)

m one or more CPUs with multiple peripherals
m maximum confidence in peripheral reuse

m IP designers develop own products without
worrying about connectivity

P. Bakowski 149

Interface

m de-facto standard for on-chip bus
m open standard

m framework for System-on-Chip designs J

m strategy for interconnection and management of
functional blocks (SoC)

m one or more CPUs with multiple peripherals
m maximum confidence in peripheral reuse

m IP designers develop own products without
worrying about connectivity

P. Bakowski 150

iAMﬂA.i.nleﬂace

m de-facto standard for on-chip bus

m open standard
m framework for System-on-Chip designs

m strategy for interconnection and management of
functional blocks (SoC)

m one or more CPUs with multiple peripherals
m maximum confidence in peripheral reuse

m IP designers develop own products without
worrying about connectivity

P. Bakowski

151

Interface

m de-facto standard for on-chip bus
m open standard
m framework for System-on-Chip designs

m strategy for interconnection and management of
functional blocks (SoC)

m one or more CPUs with multiple peripherals |

m maximum confidence in peripheral reuse

m IP designers develop own products without
worrying about connectivity

P. Bakowski 152

Interface

m de-facto standard for on-chip bus
m open standard
m framework for System-on-Chip designs

m strategy for interconnection and management of
functional blocks (SoC)

m one or more CPUs with multiple peripherals

m maximum confidence in peripheral reuse J

m IP designers develop own products without
worrying about connectivity

P. Bakowski 153

iAMﬂA.i.n]eﬂace

m de-facto standard for on-chip bus

m open standard
m framework for System-on-Chip designs

m strategy for interconnection and management of
functional blocks (SoC)

m one or more CPUs with multiple peripherals
m maximum confidence in peripheral reuse

m [P designers develop own products without
worrying about connectivity

P. Bakowski 154

iAaMJ@_r.smns — an overview

Version | Thumb | DSP |Jazelle | Media |TrustZone |Thumb2
v4T yes

v5TE yes | yes

v5TEJ yes | yes | Yyes

v6 yes yes yes yes

v6Z yes | yes | yes yes yes

V6T2 yes | yes | yes yes yes

P. Bakowski

155

iAaMJ@_r.smns — an overview

Version | Thumb | DSP |Jazelle | Media |TrustZone |Thumb2
vaT yes

v5TE yes | yes

v5TEJ yes | yes | Yyes

v6 yes yes yes yes

v6Z yes | yes | yes yes yes

V6T2 yes | yes | yes yes yes

P. Bakowski

156

iAaMJ@_r.smns — an overview

Version | Thumb | DSP |Jazelle | Media |TrustZone |Thumb2
vaT yes

v5TE yes | yes

v5TE] yes | yes | yes

v6 yes yes yes yes

v6Z yes | yes | yes yes yes

V6T2 yes | yes | yes yes yes

P. Bakowski

157

iAaMJ@_r.smns — an overview

Version | Thumb | DSP |Jazelle | Media |TrustZone |Thumb2
vaT yes

v5TE yes | yes

v5TE] yes | yes yes

v6 yes | yes | yes yes

v6Z yes | yes | yes yes yes

V6T2 yes | yes | yes yes yes

P. Bakowski

158

iAaMJ@_r.smns — an overview

Version | Thumb | DSP |Jazelle | Media |TrustZone |Thumb2
vaT yes

v5TE yes | yes

v5TEJ yes | yes | Yyes

v6 yes yes yes yes

v6Z yes | yes | yes yes yes

V6T2 yes | yes | yes yes yes

P. Bakowski

159

iAaMJ@_r.smns — an overview

Version | Thumb | DSP |Jazelle | Media |TrustZone |Thumb2
vaT yes

v5TE yes | yes

v5TEJ yes | yes | Yyes

v6 yes yes yes yes

v6Z yes | yes | yes yes yes

veT2 yes | yes | yes yes yes

P. Bakowski

160

*IhumLIngLLLLcjion Set

RO
R1

R11

16-bit instructions
mapped to 32-bit

ARM instructions y

P. Bakowski 161

*Ihummm

RO

R1

R11

P. Bakowski

ction Set

RO

R1

)

only 8 visible registers |

16-bit instructions
mapped to 32-bit

ARM instructions y

162

+Ihgmm_n§mm_tion Set
)

RO
R1

CPSR — (Current Program Status
Register) determines the mode of
operation

J

switching the mode by the execution
of Branch and Exchange instruction

P. Bakowski 163

+Ihu_mLIn§LLLLcjion Set
\

RO
R1

CPSR — (Current Program Status
Register) determines the mode of
operation

switching the mode by the execution
of Branch and Exchange instruction

P. Bakowski 164

+Ihum_b_—ABl\lLdifferences
\

RO
R1

most Thumb instructions are executed
unconditionally

data processing instructions use two-
address format

instruction formats are less regular
than ARM instruction formats

P. Bakowski 165

+Ihum_LABMdifferences
\

RO
R1

most Thumb instructions are executed
unconditionally

data processing instructions use two-
address format

instruction formats are less regular
than ARM instruction formats

P. Bakowski 166

+Ihum_LABMdifferences
\

RO
R1

most Thumb instructions are executed
unconditionally

data processing instructions use two-
address format

instruction formats are less reqular
than ARM instruction formats

P. Bakowski 167

iAaMJ@_r.qun 5

ARM DSP extensions: |

broaden the suitability of the ARM CPU for
intensive signal processing (audio, video)

Jazelle

architectural extensions to execute Java
Byte Code directly

P. Bakowski 168

iAﬂMJLeL!ﬂ'Q.n 5

ARM DSP extensions: |

broaden the suitability of the ARM CPU for
intensive signal processing (audio, video)

Jazelle

architectural extensions to execute Java
Byte Code directly

P. Bakowski 169

iABMJLELIﬂ'Qﬂ 5

ARM DSP extensions:

broaden the suitability of the ARM CPU for
intensive signal processing (audio, video)

Jazelle

architectural extensions to execute Java
Byte Code directly

P. Bakowski 170

iABMJLe_@JDn 5

ARM DSP extensions:

broaden the suitability of the ARM CPU for
intensive signal processing (audio, video)

Jazelle J

architectural extensions to execute Java
Byte Code directly

P. Bakowski 171

iABMJLe&:JIm 5

ARM DSP extensions:

broaden the suitability of the ARM CPU for
intensive signal processing (audio, video)

Jazelle

architectural extensions to execute Java
Byte Code directly

P. Bakowski 172

iABM_QSP_e)(tensions

Features: |

single-cycle 16*16 and 32*16 MAC
implementations

zero overhead saturation extension support

new instructions to load/store pairs of
registers with enhanced addressing modes

new CLZ instruction for normalization in
arithmetic operations and improved divide
performance

P. Bakowski

173

iABM_D‘SP_extensions

Features:

single-cycle 16*16 and 32*16 MAC
implementations

zero overhead saturation extension support

new instructions to load/store pairs of
registers with enhanced addressing modes

new CLZ instruction for normalization in
arithmetic operations and improved divide
performance

P. Bakowski 174

iABM_D‘SP_extensions

Features:

single-cycle 16*16 and 32*16 MAC
implementations

zero overhead saturation extension support J

new instructions to load/store pairs of
registers with enhanced addressing modes

new CLZ instruction for normalization in
arithmetic operations and improved divide
performance

P. Bakowski 175

iABM_D‘SP_extensions

Features:

single-cycle 16*16 and 32*16 MAC
implementations

zero overhead saturation extension support

new instructions to load/store pairs of
registers with enhanced addressing modes

new CLZ instruction for normalization in
arithmetic operations and improved divide
performance

P. Bakowski 176

iABM_D‘SLe)(tensions

Features:

single-cycle 16*16 and 32*16 MAC
implementations

zero overhead saturation extension support

new instructions to load/store pairs of
registers with enhanced addressing modes

new CLZ instruction for normalization in
arithmetic operations and improved divide
performance y

P. Bakowski 177

*ABM_DQ&e;(tensions

Applications: |
audio encode/decode (AAC,WMA,MP3,..)
MPEG4 decode

voice and handwriting recognition

embedded control
bit exact algorithms (GSM-AMR)

P. Bakowski 178

*ABM_DﬁLe_xtensions

Applications:
audio encode/decode (AAC,WMA,MP3,..) |
MPEG4 decode

voice and handwriting recognition

embedded control
bit exact algorithms (GSM)

P. Bakowski 179

iABM_D‘SLe_xtensions

Applications:
audio encode/decode (AAC,WMA,MP3,..)
MPEG4 decode J

voice and handwriting recognition

embedded control
bit exact algorithms (GSM)

P. Bakowski 180

*ABM_DﬁLe_xtensions

Applications:
audio encode/decode (AAC,WMA,MP3,..)
MPEG4 decode

voice and handwriting recognition |

embedded control
bit exact algorithms (GSM)

P. Bakowski 181

iABM_D‘SLe_xtensions

Applications:
audio encode/decode (AAC,WMA,MP3,..)
MPEG4 decode

voice and handwriting recognition

embedded control J
bit exact algorithms (GSM)

P. Bakowski 182

iABM_D‘SLe_xtensions

Applications:
audio encode/decode (AAC,WMA,MP3,..)
MPEG4 decode

voice and handwriting recognition

embedded control
bit exact algorithms (GSM) J

P. Bakowski 183

iABMJgLeJLe

Specific instruction set J

to execute directly Java Byte Code

reuse of all existing processor resources without
the need to re-engineer existing architecture

all processor states related to Java execution are
stored in normal ARM register set

any interrupt routine which saves on entry and
restores on exit are compatible with Jazelle

hardware logic contribute to 12K gates

P. Bakowski 184

iAﬂMAgLeJLe

Specific instruction set

to execute directly Java Byte Code |

reuse of all existing processor resources without
the need to re-engineer existing architecture

all processor states related to Java execution are
stored in normal ARM register set

any interrupt routine which saves on entry and
restores on exit are compatible with Jazelle

hardware logic contribute to 12K gates

P. Bakowski 185

iAﬂMAgLeJLe

Specific instruction set

to execute directly Java Byte Code

reuse of all existing processor resources without
the need to re-engineer existing architecture

all processor states related to Java execution are
stored in normal ARM register set

any interrupt routine which saves on entry and
restores on exit are compatible with Jazelle

hardware logic contribute to 12K gates

P. Bakowski 186

iAﬁMA@LeJLe

Specific instruction set

to execute directly Java Byte Code

reuse of all existing processor resources without
the need to re-engineer existing architecture

all processor states related to Java execution are
stored in normal ARM register set

any interrupt routine which saves on entry and
restores on exit are compatible with Jazelle

hardware logic contribute to 12K gates

P. Bakowski 187

iAﬁMA@LeJLe

Specific instruction set
to execute directly Java Byte Code

reuse of all existing processor resources without
the need to re-engineer existing architecture

all processor states related to Java execution are
stored in normal ARM register set

any interrupt routine which saves on entry and
restores on exit are compatible with Jazelle

hardware logic contribute to 12K gates

P. Bakowski 188

iAﬂMAgLeJLe

Specific instruction set

to execute directly Java Byte Code

reuse of all existing processor resources without
the need to re-engineer existing architecture

all processor states related to Java execution are
stored in normal ARM register set

any interrupt routine which saves on entry and
restores on exit are compatible with Jazelle

additional hardware logic contribute to 12K gates J

P. Bakowski 189

i_ABMysrsjg n 6

m media processing extensions J

m improved cache architecture
m improved exception and interrupt handling
m unaligned and mixed-endian data support

m Six new status bits added to programming model

P. Bakowski 190

i_ABMysrsjo n 6

m media processing extensions

m improved cache architecture |

m improved exception and interrupt handling
m unaligned and mixed-endian data support

m Six new status bits added to programming model

P. Bakowski 191

i_ABMysrsjg n 6

m media processing extensions
m improved cache architecture

m improved exception and interrupt handling J

m unaligned and mixed-endian data support

m Six new status bits added to programming model

P. Bakowski 192

i_ABMysrsjg n 6

m media processing extensions
m improved cache architecture
m improved exception and interrupt handling

m unaligned and mixed-endian data support |

m Six new status bits added to programming model

P. Bakowski 193

i_ABMysrsjo n 6

m media processing extensions
m improved cache architecture
m improved exception and interrupt handling
m unaligned and mixed-endian data support

m Six hew status bits added to programming model J

P. Bakowski 194

i_ABMy_G;programming model

m SiX new status bits J

GE[3:0] — SIMD status bits greater than or
equal to for each 8/16 bit slice

E-bit : indicates the current load/store endian
setting of the core; can be set/cleared with the
SETEND instruction

A-bit : indicates if imprecise data abort
exceptions are masked

P. Bakowski 195

i_ABMy_G;programming model

m SiX new status bits

GE[3:0] — SIMD status bits greater than or
equal to for each 8/16 bit slice

E-bit : indicates the current load/store endian
setting of the core; can be set/cleared with the
SETEND instruction

A-bit : indicates if imprecise data abort
exceptions are masked

P. Bakowski 196

i_ABMy_G;pr_ogramming model

m SiX new status bits

GE[3:0] — SIMD status bits greater than or
equal to for each 8/16 bit slice

E-bit : indicates the current load/store endian
setting of the core; can be set/cleared with the
SETEND instruction p

A-bit : indicates if imprecise data abort
exceptions are masked

P. Bakowski 197

i_ABMy_G;programming model

m SiX new status bits

GE[3:0] — SIMD status bits greater than or
equal to for each 8/16 bit slice

E-bit : indicates the current load/store endian
setting of the core; can be set/cleared with the
SETEND instruction

A-bit : indicates if imprecise data abort J
exceptions are masked

P. Bakowski 198

i_ABMy_G;media instructions

m over 60 SIMD instructions J

m enable more efficient software implementation of
high-performance media applications

m use the GE-bits added to programming model

m support four 8-bit and two 16-bit operations,
parallel add and subtract, selection, packing and
unpacking

m support dual 16-bit multiply, add/subtract

P. Bakowski 199

i_ABMy_G;media instructions

m over 60 SIMD instructions

m enable more efficient software implementation of
high-performance media applications

m use the GE-bits added to programming model

m support four 8-bit and two 16-bit operations,
parallel add and subtract, selection, packing and
unpacking

m support dual 16-bit multiply, add/subtract

P. Bakowski 200

i_ABMy_G;media instructions

m over 60 SIMD instructions

m enable more efficient software implementation of
high-performance media applications

m use the GE-bits added to programming model J

m support four 8-bit and two 16-bit operations,
parallel add and subtract, selection, packing and
unpacking

m support dual 16-bit multiply, add/subtract

P. Bakowski 201

i_ABMy_G;media instructions

m over 60 SIMD instructions

m enable more efficient software implementation of
high-performance media applications

m use the GE-bits added to programming model

m support four 8-bit and two 16-bit operations,
parallel add and subtract, selection, packing and
unpacking

m support dual 16-bit multiply, add/subtract

P. Bakowski 202

i_ABMy_G;media instructions

m over 60 SIMD instructions

m enable more efficient software implementation of
high-performance media applications

m use the GE-bits added to programming model

m support four 8-bit and two 16-bit operations,
parallel add and subtract, selection, packing and
unpacking

m support dual 16-bit multiply, add/subtract |

P. Bakowski 203

i_ABMy_G;Thumb 2

m a single Thumb instruction is equivalent to a single
ARM instruction

m more Thumb instructions are needed to accomplish
the same overall function

m combination of ARM and Thumb code gives better
balance of the cost, performance and power
characteristics of the system

P. Bakowski 204

i_ABMy_G;Thumb 2

m a single Thumb instruction is equivalent to a single
ARM instruction

m more Thumb instructions are needed to accomplish
the same overall function

m combination of ARM and Thumb code gives better
balance of the cost, performance and power
characteristics of the system

P. Bakowski 205

i_ABMy_G;TJJumb 2

m a single Thumb instruction is equivalent to a single
ARM instruction

m more Thumb instructions are needed to accomplish
the same overall function

m combination of ARM and Thumb code gives better
balance of the cost, performance and power
characteristics of the system

P. Bakowski 206

i_ABMy_G;Thumb 2

mThumb2 |

m new 16-bit instructions

m new 32-bit instructions derived from ARM instructions:
B COProcessor access,
m privileged instructions

m special instructions - SIMD

P. Bakowski 207

i_ABMy_G;Thumb 2

m Thumb 2

m new 16-bit instructions |

m new 32-bit instructions derived from ARM instructions:
B COProcessor access,
m privileged instructions

m special instructions - SIMD

P. Bakowski 208

i_ABMy_G;TJJumb 2

m Thumb 2
m new 16-bit instructions

m new 32-bit instructions derived from ARM instructions: J

B COProcessor access,
m privileged instructions

m special instructions - SIMD

P. Bakowski 209

i_ABMy_G;TJJumb 2

m Thumb 2
m new 16-bit instructions
m new 32-bit instructions derived from ARM instructions:

B COProcessor access J

m privileged instructions

m special instructions - SIMD

P. Bakowski 210

i_ABMy_G;TJJumb 2

m Thumb 2

m new 16-bit instructions

m new 32-bit instructions derived from ARM instructions:
B COProcessor access

m privileged instructions |

m special instructions - SIMD

P. Bakowski 211

i_ABMy_G;TJJumb 2

m Thumb 2

m new 16-bit instructions

m new 32-bit instructions derived from ARM instructions:
B COProcessor access,
m privileged instructions

m special instructions - SIMD |

P. Bakowski 212

,L,Ar_chilemu.re implementations

architecture

core

V1
V2
V2A
V3
V3
vat
V4
V5
V5TE
V6

ARM1

ARM2

ARM2AS, ARM3

ARM6, ARM600, ARM610

ARM7, ARM700, ARM710

ARM7TDMI, ARM710T, ARM720T, ARM740T
StrongARM, ARM8, ARM810

ARM9TDMI, ARM920T, ARM940T

ARM9E-S, ARM10TDMI, ARM1020E, XScale
ARM11

P. Bakowski

213

,L,Ar_chilemu.re implementations

architecture | core

V1 ARM1]
V2 ARM?2

V2A ARM2AS, ARM3

V3 ARM6, ARM600, ARM610

V3 ARM7, ARM700, ARM710

V4T ARM7TDMI, ARM710T, ARM720T, ARM740T
V4 StrongARM, ARM8, ARM810

V5 ARM9TDMI, ARM920T, ARM940T

V5TE ARMOE-S, ARM10TDMI, ARM1020E, XScale
V6 ARM11

P. Bakowski

214

,L,Ar_chilemu.re implementations

architecture | core

V1 ARM1

V2 ARM?2 |
V2A ARM2AS, ARM3

V3 ARM6, ARM600, ARM610

V3 ARM7, ARM700, ARM710

V4T ARM7TDMI, ARM710T, ARM720T, ARM740T
V4 StrongARM, ARM8, ARM810

V5 ARM9TDMI, ARM920T, ARM940T

V5TE ARMOE-S, ARM10TDMI, ARM1020E, XScale
V6 ARM11

P. Bakowski

215

,L,Amhilemure implementations

architecture | core

V1 ARM1

V2 ARM?2

V2A ARM2AS, ARM3 J
V3 ARM6, ARM600, ARM610

V3 ARM7, ARM700, ARM710

V4T ARM7TDMI, ARM710T, ARM720T, ARM740T
V4 StrongARM, ARM8, ARM810

V5 ARM9TDMI, ARM920T, ARM940T

V5TE ARMOE-S, ARM10TDMI, ARM1020E, XScale
V6 ARM11

P. Bakowski

216

,L,Arshilemure implementations

architecture | core

V1 ARM1

V2 ARM2

V2A ARM2AS, ARM3

V3 ARM6, ARM600, ARM610 J
V3 ARM7, ARM700, ARM710

V4T ARM7TDMI, ARM710T, ARM720T, ARM740T
V4 StrongARM, ARM8, ARM810

V5 ARM9TDMI, ARM920T, ARM940T

V5TE ARM9E-S, ARM10TDMI, ARM1020E, XScale
V6 ARM11

P. Bakowski

217

,L,Amhilemure implementations

architecture | core

V1 ARM1

V2 ARM?2

V2A ARM2AS, ARM3

V3 ARM6, ARM600, ARM610

V3 ARM7, ARM700, ARM710)
V4T ARM7TDMI, ARM710T, ARM720T, ARM740T
V4 StrongARM, ARMS, ARM810

V5 ARM9TDMI, ARM920T, ARM940T

V5TE ARMOE-S, ARM10TDMI, ARM1020E, XScale
V6 ARM11

P. Bakowski

218

,.L,Arshilemure implementations

architecture | core

V1 ARM1

V2 ARM?2

V2A ARM2AS, ARM3

V3 ARM6, ARM600, ARM610

V3 ARM7, ARM700, ARM710

V4T ARMZTDMI, ARM710T, ARM720T, ARM740T |
V4 StrongARM, ARM8, ARM810

V5 ARM9TDMI, ARM920T, ARM940T

V5TE ARMOE-S, ARM10TDMI, ARM1020E, XScale
V6 ARM11

P. Bakowski

219

,L,Arshilemure implementations

architecture | core

V1 ARM1

V2 ARM2

V2A ARM2AS, ARM3

V3 ARM6, ARM600, ARM610

V3 ARM7, ARM700, ARM710

V4T ARM7TDMI, ARM710T, ARM720T, ARM740T
V4 StrongARM, ARM8, ARM810 J
V5 ARM9TDMI, ARM920T, ARM940T

V5TE ARMO9E-S, ARM10TDMI, ARM1020E, XScale
V6 ARM11

P. Bakowski

220

,L,Arshilemure implementations

architecture | core

V1 ARM1

V2 ARM?2

V2A ARM2AS, ARM3

V3 ARM6, ARM600, ARM610

V3 ARM7, ARM700, ARM710

V4T ARM7TDMI, ARM710T, ARM720T, ARM740T
V4 StrongARM, ARM8, ARM810

V5 ARMOTDMI, ARM920T, ARM940T |
V5TE ARMOE-S, ARM10TDMI, ARM1020E, XScale
V6 ARM11

P. Bakowski

221

,.L,Arshilemure implementations

architecture | core

V1 ARM1

V2 ARM?2

V2A ARM2AS, ARM3

V3 ARM6, ARM600, ARM610

V3 ARM7, ARM700, ARM710

V4T ARM7TDMI, ARM710T, ARM720T, ARM740T
V4 StrongARM, ARM8, ARM810

V5 ARM9TDMI, ARM920T, ARM940T

V5TE ARMO9E-S, ARM10TDMI, ARM1020E, XScale |
V6 ARM11

P. Bakowski

222

,L,Ar_chilemu.re implementations

architecture | core

V1 ARM1

V2 ARM?2

V2A ARM2AS, ARM3

V3 ARM6, ARM600, ARM610

V3 ARM7, ARM700, ARM710

V4T ARM7TDMI, ARM710T, ARM720T, ARM740T
V4 StrongARM, ARM8, ARM810

V5 ARM9TDMI, ARM920T, ARM940T

V5TE ARMOIE-S, ARM10TDMI, ARM1020E, XScale
V6 ARM11 J

P. Bakowski

223

i_ABMY_TDMI

Evolved from first 32-bit ARM core ARM6

3 volt implementation contains:
Thumb instruction set
on-chip Debug support
an enhanced Multiplier

embedded ICE hardware for break- and watch- points

P. Bakowski 224

i_ABMY_TDMI

Evolved from first 32-bit ARM core ARM6

3 volt implementation contains: J

Thumb instruction set
on-chip Debug support
an enhanced Multiplier

embedded ICE hardware for break- and watch- points

P. Bakowski 225

i_ABMY_TDMl

Evolved from first 32-bit ARM core ARM6
3 volt implementation contains:

Thumb instruction set J

on-chip Debug support
an enhanced Multiplier

embedded ICE hardware for break- and watch- points

P. Bakowski 226

i_ABMY_TDMl

Evolved from first 32-bit ARM core ARM6
3 volt implementation contains:
Thumb instruction set

on-chip Debug support J

an enhanced Multiplier

embedded ICE hardware for break- and watch- points

P. Bakowski 227

i_ABMY_'I'DMI.

Evolved from first 32-bit ARM core ARM6
3 volt implementation contains:

Thumb instruction set

on-chip Debug support

an enhanced Multiplier |

embedded ICE hardware for break- and watch- points

P. Bakowski 228

i_ABMY_'I'DML

Evolved from first 32-bit ARM core ARM6
3 volt implementation contains:

Thumb instruction set

on-chip Debug support

an enhanced Multiplier

embedded ICE hardware for break- and watch- points |

P. Bakowski 229

i_ABMY_TDMl - pipeline

Using a 3-stage pipeline: |

Implementation of version 4T

fetch: instruction is fetched from memory and placed
In instruction pipeline

decode: instruction is decoded and datapath control
signals prepared

execute: register bank is read, operand shifted, ALU
result generated and written back in a destination
register

P. Bakowski 230

i_ABMZ[QMJ - pipeline

Using a 3-stage pipeline:

Implementation of version 4T J

fetch: instruction is fetched from memory and placed
In instruction pipeline

decode: instruction is decoded and datapath control
signals prepared

execute: register bank is read, operand shifted, ALU
result generated and written back in a destination
register

P. Bakowski 231

i_ABMZ[QMJ - pipeline

Using a 3-stage pipeline:
Implementation of version 4T

fetch: instruction is fetched from memory and placed J
in_instruction pipeline

decode: instruction is decoded and datapath control
signals prepared

execute: register bank is read, operand shifted, ALU
result generated and written back in a destination
register

P. Bakowski 232

i_ABMZ[QMJ - pipeline

Using a 3-stage pipeline:
Implementation of version 4T

fetch: instruction is fetched from memory and placed
In instruction pipeline

decode: instruction is decoded and datapath control
signals prepared

execute: register bank is read, operand shifted, ALU
result generated and written back in a destination
register

P. Bakowski 233

i_ABMZ[QMl - pipeline

Using a 3-stage pipeline:
Implementation of version 4T

fetch: instruction is fetched from memory and placed
In instruction pipeline

decode: instruction is decoded and datapath control
signals prepared

execute: register bank is read, operand shifted, ALU
result generated and written back in a destination
register

P. Bakowski 234

i_ABMZ[QML- interfaces

register bank: two read ports and one write port J

one additional read and one additional write port for R15

interfaces:
memory interface
MMU interface
coprocessor interface
debug interface
JTAG interface

P. Bakowski 235

i_ABMZ[QMl . interfaces

register bank: two read ports and one write port

one additional read and one additional write port for R15]

interfaces:
memory interface
MMU interface
coprocessor interface
debug interface
JTAG interface

P. Bakowski 236

i_ABMZ[QMl . interfaces

register bank: two read ports and one write port

one additional read and one additional write port for R15

interfaces: J

memory interface
MMU interface
coprocessor interface
debug interface
JTAG interface

P. Bakowski 237

i_ABMZ[QMl . interfaces

register bank: two read ports and one write port
one additional read and one additional write port for R15
interfaces:

memory interface |

MMU interface

coprocessor interface

debug interface
JTAG interface

P. Bakowski 238

i_ABMZ[QMl . interfaces

register bank: two read ports and one write port
one additional read and one additional write port for R15
interfaces:

memory interface

MMU interface |

coprocessor interface

debug interface
JTAG interface

P. Bakowski 239

i_ABMZ[QMl . interfaces

register bank: two read ports and one write port
one additional read and one additional write port for R15
interfaces:

memory interface

MMU interface

coprocessor interface |

debug interface
JTAG interface

P. Bakowski 240

i_ABMZ[QMl . interfaces

register bank: two read ports and one write port
one additional read and one additional write port for R15
interfaces:

memory interface

MMU interface

coprocessor interface

debug interface |

JTAG interface

P. Bakowski 241

i_ABMZ[QMl . interfaces

register bank: two read ports and one write port
one additional read and one additional write port for R15
interfaces:

memory interface

MMU interface

coprocessor interface

debug interface

JTAG interface J

P. Bakowski 242

i_ABMZ[QML- characteristics

process: 0,35um |

metal layers: 3
Vdd: 3.3V
core area: 2.1 mm?

power: 87/ mW

P. Bakowski

transistors: 74 209
clock: 0-66 MHz
MIPS: 60

MIPS/W 690

243

i_ABMZ[QML- characteristics

process: 0,35um

metal layers: 3

Vdd: 3.3V
core area: 2.1 mm?

power: 87/ mW

P. Bakowski

transistors: 74 209
clock: 0-66 MHz
MIPS: 60

MIPS/W 690

244

i_ABMZ[QML- characteristics

process: 0,35um
metal layers: 3
Vdd: 3.3V

core area: 2.1 mm?

power: 87/ mW

P. Bakowski

transistors: 74 209
clock: 0-66 MHz
MIPS: 60

MIPS/W 690

245

i_ABMZ[QML- characteristics

process: 0,35um
metal layers: 3
Vdd: 3.3V

core area: 2.1 mm?

power: 87/ mW

P. Bakowski

transistors: 74 209
clock: 0-66 MHz
MIPS: 60

MIPS/W 690

246

i_ABMZ[QML- characteristics

process: 0,35um
metal layers: 3
Vdd: 3.3V

core area: 2.1 mm?

power: 87/ mW

P. Bakowski

transistors: 74 209
clock: 0-66 MHz
MIPS: 60

MIPS/W 690

247

i_ABMZ[QML- characteristics

process: 0,351m transistors: 74 209

metal layers: 3
Vdd: 3.3V

core area: 2.1 mm?

clock: 0-66 MHz
MIPS: 60

MIPS/W 690
power: 87/ mW

P. Bakowski 248

i_ABMZ[QML- characteristics

process: 0,35um
metal layers: 3
Vdd: 3.3V

core area: 2.1 mm?

power: 87/ mW

P. Bakowski

transistors: 74 209
clock: 0-66 MHz |

MIPS: 60
MIPS/W 690

249

i_ABMZ[QML- characteristics

process: 0,35um
metal layers: 3
Vdd: 3.3V

core area: 2.1 mm?

power: 87/ mW

P. Bakowski

transistors: 74 209
clock: 0-66 MHz
MIPS: 60 J

MIPS/W 690

250

i_ABMZ[QML- characteristics

process: 0,35um
metal layers: 3
Vdd: 3.3V

core area: 2.1 mm?

power: 87/ mW

P. Bakowski

transistors: 74 209
clock: 0-66 MHz
MIPS: 60

MIPS/W 690 |

251

i_ABMQIQM! . characteristics

5-stage pipeline to increase clock rate

uses separate instruction/data memory ports to improve
CPI (Clock cycles Per Instruction)

Thumb hardware instruction decoding
static branch prediction
ARM9IE-S is a synthesizable version of the ARM9TDI core

P. Bakowski 252

i_ABMS_'LQML- characteristics

5-stage pipeline to increase clock rate

uses separate instruction/data memory ports to improve
CPI (Clock cycles Per Instruction)

Thumb hardware instruction decoding
static branch prediction
ARM9IE-S is a synthesizable version of the ARM9TDI core

P. Bakowski 253

i_ABMQIQML . characteristics

5-stage pipeline to increase clock rate

uses separate instruction/data memory ports to improve
CPI (Clock cycles Per Instruction)

Thumb hardware instruction decoding

static branch prediction
ARMOE-S is a synthesizable version of the ARM9TDI core

P. Bakowski 254

i_ABMQIQM! . characteristics

5-stage pipeline to increase clock rate

uses separate instruction/data memory ports to improve
CPI (Clock cycles Per Instruction)

Thumb hardware instruction decoding

static branch prediction

ARMOE-S is a synthesizable version of the ARM9TDI core

P. Bakowski 255

i_ABMQIQML . characteristics

5-stage pipeline to increase clock rate

uses separate instruction/data memory ports to improve
CPI (Clock cycles Per Instruction)

Thumb hardware instruction decoding
static branch prediction
ARMOIE-S is a synthesizable version of the ARM9TDI core J

P. Bakowski 256

iABMﬂQMI - StrongARM

StrongARM has a dedicated branch adder which operates
in parallel with the register read stage

ARM9TDMI uses the main ALU — an additional clock cycle
penalty for a taken branch but smaller core

StrongARM designed for particular technology
ARM9TDMI is readily portable to a new process

P. Bakowski 257

i_ABMQIQM! - StrongARM

StrongARM has a dedicated branch adder which operates
in parallel with the register read stage

ARM9TDMI uses the main ALU — an additional clock cycle
penalty for a taken branch but smaller core

StrongARM designed for particular technology
ARM9TDMI is readily portable to a new process

P. Bakowski 258

i_ABMQIQM! - StrongARM

StrongARM has a dedicated branch adder which operates
in parallel with the register read stage

ARM9TDMI uses the main ALU — an additional clock cycle
penalty for a taken branch but smaller core

StrongARM designed for particular technology

ARM9TDMI is readily portable to a new process

P. Bakowski 259

i_ABMQIQM! - StrongARM

StrongARM has a dedicated branch adder which operates
in parallel with the register read stage

ARM9TDMI uses the main ALU — an additional clock cycle
penalty for a taken branch but smaller core

StrongARM designed for particular technology
ARM9TDMI is readily portable to a new process

P. Bakowski 260

i_ABMZ[QMLpipeIine

ARM/TDMI

fetch ‘

P. Bakowski 261

*ABMZ[QMLpip.eline

Thumb ARM
ARM7TDMI decode decode

feten |]

P. Bakowski 262

*.ABMZ[QMijngine

Thumb ARM register shift/ register
ARM/TDMI decode decode read ALU write

een |]

P. Bakowski 263

i.ABMB.‘[DMpipeline

ARM9TDMI

fetch

P. Bakowski 264

i.ABMB.‘[QMpipeIine

ARMOTDMI decode
fetch ‘ k
register
read

P. Bakowski 265

i_ABMS_'[DMpipeIine

shift/
ARMOTDMI decode ALU
fetch ‘ k ‘
register
read

P. Bakowski 266

*_AﬁMg_‘[_D_Mijpeline

data
shift/ memory
ARMITDMI decode ALU access

fetch ‘ ! ‘ -

register
read

P. Bakowski 267

*ABMQ_‘[QMijpeIine

data
shift/ memory register
ARMOTDMI decode ALU access write

fetch ‘! ‘--

register
read

P. Bakowski 268

i_ABMQIQMLcharacteristics

process: 0,25um |

metal layers: 3
Vdd: 2.5V
core area: 2.1 mm?

power: 150 mW

P. Bakowski

transistors: 111 000
clock: 0-200 MHz
MIPS: 220

MIPS/W 1500

269

i_ABMQIQMLcharacteristics

process: 0,25um

metal layers: 3

Vdd: 2.5V
core area: 2.1 mm?

power: 150 mW

P. Bakowski

transistors: 111 000
clock: 0-200 MHz
MIPS: 220

MIPS/W 1500

270

i_ABMS_'[QMLcharacteristics

process: 0,25um
metal layers: 3
Vdd: 2.5V |

core area: 2.1 mm?

power: 150 mW

P. Bakowski

transistors: 111 000
clock: 0-200 MHz
MIPS: 220

MIPS/W 1500

271

i_ABMQIQMLcharacteristics

process: 0,25um
metal layers: 3
Vdd: 2.5V

core area: 2.1 mm? J

power: 150 mW

P. Bakowski

transistors: 111 000
clock: 0-200 MHz
MIPS: 220

MIPS/W 1500

272

i_ABMQIQMLcharacteristics

process: 0,25um
metal layers: 3

Vdd: 2.5V

core area: 2.1 mm?
power: 150 mW |

P. Bakowski

transistors: 111 000
clock: 0-200 MHz
MIPS: 220

MIPS/W 1500

273

i_ABMQIQMLcharacteristics

process: 0,25um
metal layers: 3
Vdd: 2.5V

core area: 2.1 mm?

power: 150 mW

P. Bakowski

transistors: 111 000 J

clock: 0-200 MHz
MIPS: 220
MIPS/W 1500

274

i_ABMQIQMLcharacteristics

process: 0,25um
metal layers: 3
Vdd: 2.5V

core area: 2.1 mm?

power: 150 mW

P. Bakowski

transistors: 111 000
clock: 0-200 MHz |

MIPS: 220
MIPS/W 1500

275

i_ABMS_'[QMLcharacteristics

process: 0,25um
metal layers: 3
Vdd: 2.5V

core area: 2.1 mm?

power: 150 mW

P. Bakowski

transistors: 111 000
clock: 0-200 MHz
MIPS: 220 |

MIPS/W 1500

276

i_ABMQIQMLcharacteristics

process: 0,25um
metal layers: 3
Vdd: 2.5V

core area: 2.1 mm?

power: 150 mW

P. Bakowski

transistors: 111 000
clock: 0-200 MHz
MIPS: 220

MIPS/W 1500 |

277

ijummary_

m ARM pre-history J
m licensing ARM

m ARM architecture definition
m ARM versions

m ARM architecture implementations

P. Bakowski 278

ijummary_

m ARM pre-history
m licensing ARM |

m ARM architecture definition
m ARM versions

m ARM architecture implementations

P. Bakowski 279

i_Summary_

m ARM pre-history
m licensing ARM
m ARM architecture definition |

m ARM versions

m ARM architecture implementations

P. Bakowski 280

ijummary_

m ARM pre-history
m licensing ARM
m ARM architecture definition

m ARM versions |

m ARM architecture implementations

P. Bakowski 281

ijummary_

m ARM pre-history

m licensing ARM

m ARM architecture definition
m ARM versions

m ARM architecture implementations |

P. Bakowski 282

