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iABM_p.r_edlistory

Started in 1983 — as ACORN Ltd

designing new architecture after the refusal of using
80286

ARMv1 - 1985 based on RISC 1
ARMv2 — 32-bit data; 26-bit address

simple RISC architecture, 30 K transistors, no
microcode, no cache

J
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iABM_pJaceJn the market

ARM is leading provider of 32-bit embedded RISC
MICroprocessors:

common architecture: compatible versions
high performance

ow power consumption

ow system cost
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Mot. 68K MIPS IA-32

PowerPC
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Implementation license J

most popular
hard or soft core (macro cells)

complete information to design & manufacture
integrating circuits containing ARM core

plan to be used in several products
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for fab-less semiconductor vendors
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to develop own CPU implementations
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Academic license J

basic building blocks of the core to allow
simulation and design of prototypes parts for
academic research

enables a core simulation environment to be
created
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The rules for how the microprocessor will behave:

instruction set specification (ISA)
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m ARMv1l

ﬂrst version of ARM processor

26-bit addressing, no multiply, no coprocessor
m ARMv2
included 32-bit result multiply, coprocessor

ARM2 (implementation): first commercial chip
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O ARMvZa
ARM3 chip with on chip cache

included atomic load and store
coprocessor 15 : cache management

m ARMv3
32-bit addressing, separate CPSR, SPSR
virtual memory support

ARMS6, first processor after being independent
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added half word load and store
m ARMv5

improved ARM and Thumb interworking, count
leading zeroes (CLZ) instruction

E: enhanced DSP instructions including
saturated arithmetic and 16-bit multiply

J: support for accelerated Java bytecode
execution
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ﬁARM architecture versions

ARMvE

AScale™
ARMvS . _j}
AHH%ZD
ARMSE
ARM7TTDMI ARMT720T
V4 : J
rongARM® .a.li'M)sz oT
1994 1936 1953 2000

implementations
P. Bakowski
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mcIude TEJ enhancements

memory management
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SIMD instructions (media)
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A features
Based on Berkeley RISC design |

Features used:
load-store architecture
fixed-length 32-bit instructions
3-address instruction formats
Features rejected
register windows
delayed branches
single-cycle execution of all instructions
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32-bit instructions |

17 visible registers

*ABM_pLogLamming model
RO
R1

R11 15 general purpose
R12 PC

CPSR
8/16/32 bits data types

7 modes of operation: usr, fiq,
irq, svc, abt, sys, und
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i_ABM_\:QpLo_cessor interface

Supports a general-purpose extension of its
instruction set through the addition of hardware
COprocessors

Support for up to 16 logical coprocessors
16 private registers of any width
Coprocessors use load-store architecture

Coprocessors use handshaking to perform
instructions
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ic_ommonaLexecution

31.. 28, 27 . 0

cond

f

Every instruction has a 4-bit condition code J

All instructions may be executed conditionally including:
supervisor instructions and
coprocessor instructions,

excluding Thumb instructions
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ic_ommonaLexecution

31.. 28, 27 . 0

cond

Every instruction has a 4-bit condition code

All instructions may be executed conditionally including:
supervisor instructions and
coprocessor instructions,

excluding Thumb instructions (16-bit instructions) J
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iQoncﬂtLonaLexecution

Each instruction mnemonic may be extended by
appending two letters: EQ,NE,GE,LE,GT, ..

J

subgt Ri, Ri, Rj
suble Ri, Ri, Rj

bne loop

P. Bakowski
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*C_ommonaLexecution

Each instruction mnemonic may be extended by
appending two letters: EQ,NE,GE,LE,GT, ..

subgt Ri, Ri, Rj

suble Ri, Ri, Rj -
conditional branch
bne loOp @ jnstruction
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iQoncﬂtLonaLexecution

conditional execution cuts down on the space
available for displacement memory access

avoids branch instructions for simple if statements
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Conditio execution

int ged(int i, int j) b test

{ Ri Ri Ri
while (i!=j) loop sul;lgt RI., RI., R]
{if (i>]) i -=j; suble |Rj, Rj, Ri
else j -=i; } test |cmp |Ri, Rj
return |i; bne |loop

}
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int ged(int i, int j) b test

{ I . . .
while (i!=j) Jo Suglgt E!’ ';'.' ';J.
i (i>)) i == e e
else j -=i: } test [cmp |Ri, Rj
return i; bne |loop
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Conditio execution

int ged(int i, int j) b test

{ | Ri, Ri, Rj
while (i!=j) 0op | subgt il
{if (i) i -=j; suble |Rj, Rj, Ri
else j -=i: test [cmp |Ri, Rj
return i bne |loop

}
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iMQJﬂpJg_r_e.glster transfer operation

Any subset (or all) of the 16 registers visible
in the current operating mode to be loaded from

or stored to memory )

Used on procedure entry and return to save
and restore workspace registers

Useful for high-bandwidth memory block copy
routines.
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iMQJLiQIﬁ_mLster transfer operation

31.. 28, 27..25, 24..20, 19..16, 15 . 0

100 | PUSWL| Rn

register list ‘

move data
instruction
operating code J
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31.. 28, 27..25, 24..20, 19..16, 15 . 0

100 | PUSWL| Rn

register list ‘

pre/post-index |
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*Mujlimg;@];ster transfer operation

31.. 28, 27..25, 24..20, 19..16, 15 . 0

100 | PUSWL| Rn

up/down |

pre/post-index
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*Mmumg;mﬁter transfer operation

31.. 28, 27..25, 24..20, 19..16, 15 . 0

100 | PUSWL | Rn

restore PSR, force user bit |
up/down

pre/post-index
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iMQJLiQIﬁ_mLster transfer operation

31.. 28, 27..25, 24..20, 19..16, 15 . 0

100 | PUSWL| Rn

write-back auto-index ]

restore PSR, force user bit
up/down

pre/post-index
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iMQJLiQIﬁ_mLster transfer operation

31.. 28, 27..25, 24..20, 19..16, 15 . 0

100 | PUSWL| Rn

base register

load/store
write-back auto-index

restore PSR, force user bit
up/down

pre/post-index
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i&hjﬂmd_ALU operations

The operand can be shifted before being
processed by ALU and stored into a destination
register y

Operations include arithmetic, logical, and
register-register move

I+=(j<<3) can be performed as a single
instruction on the ARM
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iALchlLechu_r_al support for OS

m coprocessor number 15 J

m on-chip system OS control processor controls:

cache memory

memory management and protection
pre-fetch buffer

branch target cache

system configuration signals

P. Bakowski 120



*AmhlL&cju_r_al support for OS

m coprocessor number 15

m on-chip system OS control processor controls: J

cache memory

memory management and protection
pre-fetch buffer

branch target cache

system configuration signals

P. Bakowski 121



iALchlLechu_r_al support for OS

m coprocessor number 15

m on-chip system OS control processor controls:

cache memory J

memory management and protection
pre-fetch buffer
branch target cache

system configuration signals

P. Bakowski

122



chitectural support for OS

m coprocessor number 15

m on-chip system OS control processor controls:

cache memory

memory management and protection J

pre-fetch buffer
branch target cache

system configuration signals

P. Bakowski 123



iALchlLechu_r_al support for OS

m coprocessor number 15

m on-chip system OS control processor controls:

cache memory

memory management and protection
pre-fetch buffer J

branch target cache

system configuration signals

P. Bakowski 124



iALchlLechu_r_al support for OS

m coprocessor number 15

m on-chip system OS control processor controls:

cache memory
memory management and protection
pre-fetch buffer

branch target cache J

system configuration signals

P. Bakowski 125



*AmhlL&cju_r_al support for OS

m coprocessor number 15

m on-chip system OS control processor controls:

cache memory

memory management and protection
pre-fetch buffer

branch target cache

system configuration signals J

P. Bakowski 126



operations

m translates virtual addresses into physical addresses J

physical
address

ﬁ

32-bit virtual
address
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U itecture operations

m translates virtual addresses into physical addresses

m controls memory access permissions, aborting
illegal accesses

MMU illegal access |
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W operations

m uses two-level page table with table-walking
hardware

page tables

disk
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Wﬁgjure operations

m controls a TLB which stories recently used page J

translations

MMU

Translation Look-ahead BufferJ
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U architecture operations

m provides 16 domains — each protected from one
another while using the same TLB

domain |

"N
e

domain |

MMU

Translation Look-ahead BufferJ

P. Bakowski 131



i&uppgﬂ_mr_ OS

Synchronization problem: |

mutually exclusive access to data structure
only one process can access this at any time

must wait until no other process is accessing the
data

need of a lock mechanism to prevent another
process to access the data
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i&uppgﬂ_m_r_ OS

Synchronization problem:

mutually exclusive access to data structure
only one process can access this at any time

must wait until no other process is accessing the
data

need of a lock mechanism to prevent another
process to access the data
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i&uppgﬂ_mr_ OS

ARM architecture supports the synchronization by
providing a “swap" instruction:

“swap” instruction is atomic
performs test and set operation

a register is set to the “busy” value and swapped
with the memory location containing the Boolean

If loaded value is interpreted as “free” the process
may continue the execution; otherwise must wait by
on the lock
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Context switching

B a process runs in a context J

m context state includes the values of all registers
including the program counter, stack pointer, etc.

m when a process switch takes place the context of
the old process must be saved and that of the new
process must be restored

ARM process

S

)| context
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Context switching

B A Process runs in a context

m context state includes the values of all registers
including the program counter, stack pointer, etc.

m when a process switch takes place the context of
the old process must be saved and that of the new

process must be restored y
context
ARM process switch process
1 ¥ ~ 1
1 J 1 J
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Context switching

m ARM provides architectural support for register
saving and restoring in privileged mode

m special forms of the load and store multiple
Instructions

m allows code running in a non-user mode to save
and restore the user registers from an area of
memory addressed by a non-user mode register
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Interface

m de-facto standard for on-chip bus J

m open standard
m framework for System-on-Chip designs

m strategy for interconnection and management of
functional blocks (SoC)

m one or more CPUs with multiple peripherals
m maximum confidence in peripheral reuse

m IP designers develop own products without
worrying about connectivity
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iAaMJ@_r.smns — an overview

Version | Thumb | DSP |Jazelle | Media |TrustZone |Thumb2
v4T yes

v5TE yes | yes

v5TEJ yes | yes | Yyes

v6 yes yes yes yes

v6Z yes | yes | yes yes yes

V6T2 yes | yes | yes yes yes
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*IhumLIngLLLLcjion Set

RO
R1

R11

16-bit instructions
mapped to 32-bit

ARM instructions y
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+Ihgmm_n§mm_tion Set
)

RO
R1

CPSR — (Current Program Status
Register) determines the mode of
operation

J

switching the mode by the execution
of Branch and Exchange instruction
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most Thumb instructions are executed
unconditionally

data processing instructions use two-
address format

instruction formats are less regular
than ARM instruction formats
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iAaMJ@_r.qun 5

ARM DSP extensions: |

broaden the suitability of the ARM CPU for
intensive signal processing (audio, video)

Jazelle

architectural extensions to execute Java
Byte Code directly
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iABM_QSP_e)(tensions

Features: |

single-cycle 16*16 and 32*16 MAC
implementations

zero overhead saturation extension support

new instructions to load/store pairs of
registers with enhanced addressing modes

new CLZ instruction for normalization in
arithmetic operations and improved divide
performance
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*ABM_DQ&e;(tensions

Applications: |
audio encode/decode (AAC,WMA,MP3,..)
MPEG4 decode

voice and handwriting recognition

embedded control
bit exact algorithms (GSM-AMR)
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iABMJgLeJLe

Specific instruction set J

to execute directly Java Byte Code

reuse of all existing processor resources without
the need to re-engineer existing architecture

all processor states related to Java execution are
stored in normal ARM register set

any interrupt routine which saves on entry and
restores on exit are compatible with Jazelle

hardware logic contribute to 12K gates
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to execute directly Java Byte Code
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i_ABMysrsjg n 6

m media processing extensions J

m improved cache architecture
m improved exception and interrupt handling
m unaligned and mixed-endian data support

m Six new status bits added to programming model
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i_ABMy_G;programming model

m SiX new status bits J

GE[3:0] — SIMD status bits greater than or
equal to for each 8/16 bit slice

E-bit : indicates the current load/store endian
setting of the core; can be set/cleared with the
SETEND instruction

A-bit : indicates if imprecise data abort
exceptions are masked
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i_ABMy_G;media instructions

m over 60 SIMD instructions J

m enable more efficient software implementation of
high-performance media applications

m use the GE-bits added to programming model

m support four 8-bit and two 16-bit operations,
parallel add and subtract, selection, packing and
unpacking

m support dual 16-bit multiply, add/subtract
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i_ABMy_G;Thumb 2

m a single Thumb instruction is equivalent to a single
ARM instruction

m more Thumb instructions are needed to accomplish
the same overall function

m combination of ARM and Thumb code gives better
balance of the cost, performance and power
characteristics of the system
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i_ABMy_G;Thumb 2

mThumb2 |

m new 16-bit instructions

m new 32-bit instructions derived from ARM instructions:
B COProcessor access,
m privileged instructions

m special instructions - SIMD
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,L,Ar_chilemu.re implementations

architecture

core

V1
V2
V2A
V3
V3
vat
V4
V5
V5TE
V6

ARM1

ARM2

ARM2AS, ARM3

ARM6, ARM600, ARM610

ARM7, ARM700, ARM710

ARM7TDMI, ARM710T, ARM720T, ARM740T
StrongARM, ARM8, ARM810

ARM9TDMI, ARM920T, ARM940T

ARM9E-S, ARM10TDMI, ARM1020E, XScale
ARM11
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5-stage pipeline to increase clock rate

uses separate instruction/data memory ports to improve
CPI (Clock cycles Per Instruction)

Thumb hardware instruction decoding
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ARM9IE-S is a synthesizable version of the ARM9TDI core

P. Bakowski 252



i_ABMS_'LQML- characteristics

5-stage pipeline to increase clock rate

uses separate instruction/data memory ports to improve
CPI (Clock cycles Per Instruction)

Thumb hardware instruction decoding
static branch prediction
ARM9IE-S is a synthesizable version of the ARM9TDI core

P. Bakowski 253



i_ABMQIQML . characteristics

5-stage pipeline to increase clock rate

uses separate instruction/data memory ports to improve
CPI (Clock cycles Per Instruction)

Thumb hardware instruction decoding

static branch prediction
ARMOE-S is a synthesizable version of the ARM9TDI core

P. Bakowski 254



i_ABMQIQM! . characteristics

5-stage pipeline to increase clock rate

uses separate instruction/data memory ports to improve
CPI (Clock cycles Per Instruction)

Thumb hardware instruction decoding

static branch prediction

ARMOE-S is a synthesizable version of the ARM9TDI core

P. Bakowski 255



i_ABMQIQML . characteristics

5-stage pipeline to increase clock rate

uses separate instruction/data memory ports to improve
CPI (Clock cycles Per Instruction)

Thumb hardware instruction decoding
static branch prediction
ARMOIE-S is a synthesizable version of the ARM9TDI core J

P. Bakowski 256



iABMﬂQMI - StrongARM

StrongARM has a dedicated branch adder which operates
in parallel with the register read stage

ARM9TDMI uses the main ALU — an additional clock cycle
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