Internet & Multimedia

streamer — concepts and examples
: P. Bakowski

bako@ieee.org

mailto:bako@ieee.org

What is Gstreamer

GStreamer is a pipeline-based multimedia framework
written in the C programming language with the type
system based on GObject.

GStreamer allows a programmer to create a variety of
media-handling components, including simple audio
playback, audio and video playback, recording, streaming
and editing.

The pipeline design serves as a base to create many
types of multimedia applications such as video editors,
streaming media broadcasters and media players.

P. Bakowski 2

Gstreamer - global overview

gstreamer tools

gst-inspect
gst-launch
gst-editor

gstreamer core framework media agnostic

base classes

message bus

media type negotiation
plugin system

data transport
synchronization

S, J =

protocols sources formats codecs filters sinks
- file: - alsa - avi -mp3 - canverters | - alsa

- http: - w412 - mpd - mpegd - MIXers - Xvideo
- rtsp: - tep/udp - g9 - varbis - effects - tepfudp

gstreamer plugins 3rd p:
gstreamer includes over 250 plugins

P. Bakowski 3

Gstreamer - technical overview

N

GStreamer processes media by connecting a number of
processing elements into a pipeline.

Each element is provided by a plug-in. Elements can be grouped
into bins, which can be further aggregated, thus forming a
hierarchical graph.

Elements communicate by means of pads. A source pad on one
element can be connected to a sink pad on another.

When the pipeline is in the playing state, data buffers flow from the
source pad to the sink pad. Pads negotiate the kind of data that
will be sent using capabilities.

P. Bakowski 4

http://en.wikipedia.org/wiki/Plug-in_%28computing%29

Gstreamer - technical overview

kT lagram below could exemplify playing an MP3 file using
GStreamer.
The file source reads an MP3 file from a computer's hard-drive and
sends it to the MP3 decoder.
The decoder decodes the file data and converts it into PCM samples
which then pass to the ALSA sound-driver.
The ALSA sound-driver sends the PCM sound samples to the
computer's speakers.

Bin / pipeline

Elerment Element Elerment
(File plugin) (Decoder) (ALSA)
— Sink —l Sink

Source Source

P. Bakowski 5

http://en.wikipedia.org/wiki/MP3
http://en.wikipedia.org/wiki/Pulse-code_modulation
http://en.wikipedia.org/wiki/Advanced_Linux_Sound_Architecture

Gstreamer — plugins

puieamer uses a plug-in architecture which makes the most of
GStreamer's functionality implemented as shared libraries.
GStreamer's base functionality contains functions for registering and
loading plug-ins and for providing the fundamentals of all classes in the
form of base classes.

Plug-in libraries get dynamically loaded to support a wide spectrum of
codecs, container formats, input/output drivers and effects.

Since version 0.10, the plug-ins come grouped into three sets (named after the
film The Good, the Bad and the Ugly), There's also a separate GStreamer
FFmpeg plug-in, which is a FFmpeg-based plug-in that supports many media
formats such as MPEG-1, MPEG-2, MPEG-4, H.261, H.263, H.264, RealVideo,
MP3, WMV, FLV, etc.

$ sudo apt-get install libgstreamer0.10-0

gstreamer0.10-ffmpeg gstreamer0.1l0-alsa gstreamer0.10-plugins-base
gstreamer0.10-plugins-good

gstreamer0.10-plugins-bad

gstreamer0.10-plugins-ugly

THE AND THE

GOOD BAD UGL

Clint Eastwood, Lee Van Cleef,
and Eli Wallach

P. Bakowski 6

Gstreamer - elements

There are different types of elements such as:
- source element: the source of stream
- sink element: the destination of stream

- filter: the manipulator of streams

Source Element Filter Element Sink Element
src —» sink src —» sink

P. Bakowski 7

Gstreamer - elements

ach element can change state during the execution of
application. The states are:

- null: no resource is allocated

- ready: resources are allocated, but the streams are not opened
- pause: streams are opened but no processed

- play: streams are beina processed

Source Element Filter Element Sink Element
src —» sink src = sink

P. Bakowski 8

Gstreamer - bin

IN 1S an element which contains other elements.
Since it is an element it can have the same states as mentioned for

element.
By changing the state of a bin it automatically changes the states

of its elements

Bin
Element 1 Element 2 Element 3
src - » sink src | = sink

P. Bakowski 9

Gstreamer - pipeline

ipeline is a top level Bin. Each application must have one
pipeline.

The following figure demonstrates a pipeline for an ogg player

~ Pipeline

vorhis-decoder audio-sink
- Sink | | src - sink
file-source ' -'-i:gg-demuxer| _— VAR ==
sre —= sink
sre2 |-, S—
. [theora-decoder video-sink
A sink | | src | w| sink

P. Bakowski 10

Gstreamer — pads

e pads are element's interface. Streams flow from an element's
source pad to another element's sink pad. Pads can be built
before execution or during runtime. Pads can have different
capabilities, so before connecting two elements together we must
make sure that two elements can so to speak talk together.

pipeline sink pad
' source pad P

|_| |_||_| L~ vorbis-decoder audio-sink '
, 4o @)

file-source ogg-demuxer g

= 4
theora-decoder video-sink
r I
« B =

Gstreamer pipeline for a basic ogg player

P. Bakowski 11

Gstreamer — autoplugging

e audio pipeline with the plugins - a simple media player for
Ogg/Vorbis files:

pipeline
|ﬁ!esource | ogg-demuxer | |varb:sdecnder | converter | |aud0c:utput
: : : : : >

i i i : H i : i

: : : : i i i E

' : : ' audio/x-raw, : audio/x-raw, i

(any) ' audio/x-vorbis ' format=F32LE i format=516LE
application/ogg audiofx-vorbis audio/x-raw, audiofx-raw,
format=F32LE format=5S16LE

P. Bakowski 12

Gstreamer - bus, buffers, ..

s : Each element can communicate with other elements via a
bus. Bins usually transfer the bus messages of their children to
applications.

Application

Bus

Y
Bin Buffer

Element 1 Element 2 « « Element 3 lessage

SIC = sink src - » Ssink Event

P. Bakowski 13

Gstreamer - bus, buffers, ..

ers - They can pass streaming data between elements in the
bin. They always travel downstream.

Events - Objects used to notify elements which are waiting for a
particular event to occur. They can be sent from application and
can travel downstream and upstream.

Message - Objects posted on pipeline bus to notify the application
of any particular information such as bugs, state changes, end of
streams, etc..

Query - Objects sent from application or between elements to ask
a particular information such as duration, positions, etc.. In a bin
they can travel downstream and upstream.

P. Bakowski 14

Using Gstreamer - launch

A

er the installation Gstreamer offers several commands :

gst-launch - is a simple script-like commandline application
that can be used to build and test pipelines.

For example, the command :

gst-launch audiotestsrc ! audioconvert !
audio/x-raw,channels=2 ! alsasink

will run a pipeline which generates a sine-wave audio stream and
plays it to your ALSA audio card.

P. Bakowski 15

Using Gstreamer - launch

t-launch also allows the use of multiple threads.

N

You can use dots to imply padnames on elements, or even omit
the padname to automatically select a pad.

Using all this, the pipeline (note the use of queue element):

gst-launch filesrc location=file.ogg ! oggdemux
name=d d. ! queue ! theoradec ! videoconvert !
xvimagesink d. ! queue ! vorbisdec !
audioconvert ! audioresample ! alsasink

will play an Ogg file containing a Theora video-stream and a
Vorbis audio-stream.

P. Bakowski 16

Using Gstreamer - inspect

N

st-inspect can be used to inspect all properties, signals,
dynamic parameters and the object hierarchy of an element.

This can be very useful to see which GObject properties or which
signals (and using what arguments) an element supports.

bako@mezza:~$ gst-

ffmux_

ffdec_

ffdec_

ffdec_

ffdec_

ffdec_

: ffdec_

dec: flu
mpegaudioparse:

typefindfunctions:
typefindfunctions:
typefindfunctions:
typefindfunctions:

mad: mad: mad

inspect-0.10 | grep mp3
: FFmpeg MPEG audio layer 3 formatter (not recommended, use id3v2mux instead)
ond4float: FFmpeg MP3onMP4 decoder
ond: FFmpeg MP3onMP4 decoder
adufloat: FFmpeg ADU (Application Data Unit) MP3 (MPEG audio layer 3) decoder
adu: FFmpeg ADU (Application Data Unit) MP3 (MPEG audio layer 3) decoder
float: FFmpeg MP3 (MPEG audio layer 3) decoder
: FFmpeg MP3 (MPEG audio layer 3) decoder
dec: Fluendo MP3 Decoder (liboil build)
parse: MPEG1 Audio Parser
audio/mpeqg: , mp2, mpl, mpga
application/x-apetag: , ape, mpc, Wwv
application/x-id3vi1: , mp2, mpl, mpga, ogg, flac, tta
application/x-1id3v2: , mp2, mpl, mpga, ogg, flac, tta
decoder

lame: lame: L.A.M.E. encoder

lame: Llame enc:

P. Bakowski

L.A.M.E. encoder

17

Using Gstreamer - inspect

N

bako@mezza:~% gst-inspect-0.10 mad
Factory Details:
Long name: mad mp3 decoder
Class: Codec/Decoder /Audio
Description: Uses mad code to decode mp3 streams
Author(s): Wim Taymans <wim@fluendo.com=
Rank: secondary (128)

Plugin Details:
Mame: mad
Description: mp3 decoding based on the mad library
Filename: Jusr/1ib/x86_64-1inux-gnu/gstreamer-0.10/1libgstmad.so
Version: 0.10.19
License: GPL
Source module: gst-plugins-ugly
Source release date: 2012-02-20
Binary package: GStreamer Ugly Plugins (Ubuntu)
Origin URL: https:f/launchpad.net/distros/ubuntu/+source/gst-plugins-ugly®.10

P. Bakowski 18

streamer allows us to send the multimedia flows over
several Internet protocols :

| Gstreamer — streaming

s directly over UDP, TCP as simple data flows or

s with RTP/UDP and RTP/RTCP/UDP as controlled
multimedia flows

@IP - port(s)

&

@IP - port(s)

P. Bakowski 19

Gstreamer - streaming on UDP

gst-launch -v v4l2src ! 'video/x-raw-yuv, width=320,
height=240, framerate=30/1]' ! queue ! videorate !
'video/x-raw-yuv, framerate=30/1' ! jpegenc quality=50 !
udpsink host=172.19.64.141 port=5000

~a

gst-launch udpsrc port=5000 ! jpegdec ! ffmpegcolorspace !
autovideosink

udpsink

@IP - port

- @IP - port
udpsrc

P. Bakowski 20

Gstreamer - streaming on UDP

gst-launch-1.0 -v v4l2src ! 'video/x-raw, width=320,
height=240, framerate=30/1]' ! queue ! videorate !
'video/x-raw, framerate=30/1' ! jpegenc quality=50 ! \

udpsink host=172.19.64.141 port=5000

~a

gst-launch-1.0 udpsrc port=5000 ! jpegdec ! videoconvert !
autovideosink

udpsink

@IP - port

= @IP - por _J

udpsrc

P. Bakowski 21

Gstreamer - streaming on TCP

the client of tcpserver - to be launched first !

echo 'waiting for the connection from server'
gst-launch tcpserversrc host=172.19.64.141 port=5002 !
filesink location@iCoffee.mp3

#sending data to the client on host=172.19.69.141 port=5002
gst-launch -v filesrc location=Coffee.mp3 ! tcpclientsink
host=172.19.64.141 port=5002

tcpelientsink

@IP - port

tcpserversrc

P. Bakowski 22

Streaming on RTP/UDP

st-launch -v alsasrc device=hw:1 ! audioconvert ! audioresample
1 'audio/x-raw-int,rate=16000,width=16,channels=1' ! speexenc !
rtpspeexpay ! udpsink host=172.19.64.141 port=50013

gst-launch udpsrc port=5001 caps="application/x-rtp,
media=(string)audio, clock-rate=(int)16000,
encoding-name=(string)SPEEX, encoding-params=(string)l,
payload=(int)110" ! gstrtpjitterbuffer name=jbuf latency=70
drop-on-latency=True ! rtpspeexdepay ! speexdec ! audioconvert !
audioresample ! volume volume=10 ! autoaudiosink

[+ sender pipsline

N

udpsink

@IP - port

— - —
| Microsoft alsasrc

device=hw:1

P. Bakowski 23

Streaming on RTPITCP

aspivid -t 0 -w 1280 -h 720 -fps 25 -b 2500000 -p 0,0,640,480
-0 - | gst-launch -v fdsrc ! h264parse ! rtph264pay
config-interval=1 pt=96 ! gdppay ! tcpserversink
host=192.168.0.9 port 5000

gst-launch-1.0 -v tcpclientsrc host=192.168.0.9 port=5000 !
gdpdepay ! rtph264depay ! avdec_h264 ! videoconvert !
autovideosink sync=false

tcpserversink

tepelientsre

@IP - port

When using gdp with TCP, the sender can stream data using a
tcpserversink, which can be received by multiple clients using
tcpelientsrce. You are able to start the sender before the receiver.

P. Bakowski 24

Streaming with RTCP session

E-launch -tv v4l2src ! videorate ! videoscale method=1 \
video/x-raw-yuv,width=320,height=240 \
jpegenc ! rtpjpegpay ! .send rtp sink gstrtpsession

name=session \
.send rtp src ! udpsink port=5000 host=172.19.64.141 \

session.send rtcp src ! udpsink port=5001 host=172.19.64.141

gst-launch -tv udpsrc port=5000 \
caps="application/x-rtp, media=(string)video,
clock-rate=(int)90000, encoding-name=(string)JPEG,
encoding-params=(string)l, payload=(int)26" !\

.recv_rtp sink gstrtpsession name=session .recv_rtp src \

! rtpjpegdepay ! jpegdec ! autovideosink \

udpsrc port=5001 caps="application/x-rtcp" ! session.recv rtcp sink

P. Bakowski

;if"mm“’

= Gstreamer - overview

= Gstreamer plugins

» Gstreamer: bins, pipelines ..

= Gstreamer inspect and launch

= Streaming on UDP

» Streaming on TCP

» Streaming with RTP/UDP and RTP/TCP
» Streaming session with RTP and RTCP

P. Bakowski 26

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 25
	Slide 26

